/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #include #ifndef __VCG_HEDGE_COMPONENT #define __VCG_HEDGE_COMPONENT namespace vcg { namespace hedge { /* Some naming Rules All the Components that can be added to a vertex should be defined in the namespace hedge: */ // ///*-------------------------- VERTEX ----------------------------------------*/ //template class EmptyVertexRef: public T { //public: // // typedef typename T::VertexType VertexType; // // typedef typename T::CoordType CoordType; // inline typename T::VertexType * & V( const int j ) { assert(0); static typename T::VertexType *vp=0; return vp; } // inline typename T::VertexType * const & V( const int j ) const { assert(0); static typename T::VertexType *vp=0; return vp; } // inline typename T::VertexType * cV( const int j ) const { assert(0); static typename T::VertexType *vp=0; return vp; } // inline typename T::CoordType & P( const int j ) { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } // inline const typename T::CoordType & P( const int j ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } // inline const typename T::CoordType &cP( const int j ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } // template // void ImportData(const LeftF & leftF) {T::ImportData(leftF);} // static bool HasVertexRef() { return false; } // static void Name(std::vector & name){T::Name(name);} // //}; //template class VertexRef: public T { //public: // VertexRef(){ // v[0]=0; // v[1]=0; // } // // inline typename T::VertexType * & V( const int j ) { assert(j>=0 && j<2); return v[j]; } // inline typename T::VertexType * const & V( const int j ) const { assert(j>=0 && j<2); return v[j]; } // inline typename T::VertexType * cV( const int j ) const { assert(j>=0 && j<2); return v[j]; } // // // Shortcut per accedere ai punti delle facce // inline typename T::CoordType & P( const int j ) { assert(j>=0 && j<2); return v[j]->P(); } // inline const typename T::CoordType &cP( const int j ) const { assert(j>=0 && j<2); return v[j]->cP(); } // // /** Return the pointer to the ((j+1)%3)-th vertex of the face. // @param j Index of the face vertex. // */ // inline typename T::VertexType * & V0( const int j ) { return V(j);} // inline typename T::VertexType * & V1( const int j ) { return V((j+1)%2);} // inline const typename T::VertexType * const & V0( const int j ) const { return V(j);} // inline const typename T::VertexType * const & V1( const int j ) const { return V((j+1)%2);} // inline const typename T::VertexType * const & cV0( const int j ) const { return cV(j);} // inline const typename T::VertexType * const & cV1( const int j ) const { return cV((j+1)%2);} // // /// Shortcut per accedere ai punti delle facce // inline typename T::CoordType & P0( const int j ) { return V(j)->P();} // inline typename T::CoordType & P1( const int j ) { return V((j+1)%2)->P();} // inline const typename T::CoordType & P0( const int j ) const { return V(j)->P();} // inline const typename T::CoordType & P1( const int j ) const { return V((j+1)%2)->P();} // inline const typename T::CoordType & cP0( const int j ) const { return cV(j)->P();} // inline const typename T::CoordType & cP1( const int j ) const { return cV((j+1)%2)->P();} // // template // void ImportData(const LeftF & leftF){ V(0) = NULL; V(1) = NULL; V(2) = NULL; T::ImportData(leftF);} // // static bool HasVertexRef() { return true; } // static void Name(std::vector & name){name.push_back(std::string("VertexRef"));T::Name(name);} // // // private: // typename T::VertexType *v[2]; //}; /*-------------------------- INCREMENTAL MARK ----------------------------------------*/ template class EmptyMark: public T { public: static bool HasMark() { return false; } static bool HasMarkOcc() { return false; } inline void InitIMark() { } inline int & IMark() { assert(0); static int tmp=-1; return tmp;} inline int IMark() const {return 0;} template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static void Name(std::vector & name){T::Name(name);} }; template class Mark: public T { public: static bool HasMark() { return true; } static bool HasMarkOcc() { return true; } inline void InitIMark() { _imark = 0; } inline int & IMark() { return _imark;} inline const int & IMark() const {return _imark;} template < class LeftV> void ImportData(const LeftV & left ) { IMark() = left.IMark(); T::ImportData( left); } static void Name(std::vector & name){name.push_back(std::string("Mark"));T::Name(name);} private: int _imark; }; /*------------------------- FLAGS -----------------------------------------*/ template class EmptyBitFlags: public T { public: typedef int FlagType; /// Return the vector of Flags(), senza effettuare controlli sui bit int &Flags() { static int dummyflags(0); assert(0); return dummyflags; } int Flags() const { return 0; } template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static bool HasFlags() { return false; } static void Name(std::vector & name){T::Name(name);} }; template class BitFlags: public T { public: BitFlags(){_flags=0;} typedef int FlagType; int &Flags() {return _flags; } int Flags() const {return _flags; } template < class LeftV> void ImportData(const LeftV & left ) { Flags() = left.Flags(); T::ImportData( left); } static bool HasFlags() { return true; } static void Name(std::vector & name){name.push_back(std::string("BitFlags"));T::Name(name);} private: int _flags; }; /*----------------------------- HVADJ ------------------------------*/ template class EmptyHVAdj: public T { public: typename T::VertexPointer &HVp() { static typename T::VertexPointer ep=0; assert(0); return ep; } const typename T::VertexPointer cHVp() const { static typename T::VertexPointer ep=0; assert(0); return ep; } int &HVi(){static int z=0; return z;} template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static bool HasHVAdjacency() { return false; } static bool HasHVAdjacencyOcc() { return false; } static void Name(std::vector & name){ T::Name(name);} }; template class HVAdj: public T { public: HVAdj(){_vp =0;} typename T::VertexPointer & HVp() {return _vp ; } const typename T::VertexPointer cHVp() const {return _vp ; } template < class LeftV> void ImportData(const LeftV & left ) { this->V() = NULL; T::ImportData( left); } static bool HasHVAdjacency() { return true; } static bool HasHVAdjacencyOcc() { return true; } static void Name(std::vector & name){name.push_back(std::string("HVAdj"));T::Name(name);} private: typename T::VertexPointer _vp ; }; /*----------------------------- HEADJ ------------------------------*/ template class EmptyHEAdj: public T { public: typename T::EdgePointer &HEp() { static typename T::EdgePointer ep=0; assert(0); return ep; } const typename T::EdgePointer cHEp() const { static typename T::EdgePointer ep=0; assert(0); return ep; } template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static bool HasHEAdjacency() { return false; } static bool HasHEAdjacencyOcc() { return false; } static void Name(std::vector & name){ T::Name(name);} }; template class HEAdj: public T { public: HEAdj(){_ep =0;} typename T::EdgePointer &HEp() {return _ep ; } const typename T::EdgePointer cHEp() const {return _ep ; } template < class LeftV> void ImportData(const LeftV & left ) { this->V() = NULL; T::ImportData( left); } static bool HasHEAdjacency() { return true; } static bool HasHEAdjacencyOcc() { return true; } static void Name(std::vector & name){name.push_back(std::string("HEAdj"));T::Name(name);} private: typename T::EdgePointer _ep ; }; /*----------------------------- HHADJ ------------------------------*/ template class EmptyHHAdj: public T { public: typename T::HEdgePointer &HHp(const int & ) { static typename T::EdgePointer ep=0; assert(0); return ep; } typename T::HEdgePointer cHHp(const int & ) { static typename T::EdgePointer ep=0; assert(0); return ep; } int &HHi(){static int z=0; return z;} template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static bool HasHHAdjacency() { return false; } static bool HasHHAdjacencyOcc() { return false; } static void Name(std::vector & name){ T::Name(name);} }; template class HHAdj: public T { public: HHAdj(){_ep=0;} typename T::EdgePointer &HHp(const int & i) {return _ep[i]; } typename T::EdgePointer cHHp(const int & i) {return _ep[i]; } int &HHi(const int & i) {return _zp[i]; } template < class LeftV> void ImportData(const LeftV & left ) { HHp() = NULL; T::ImportData( left); } static bool HasHHAdjacency() { return true; } static bool HasHHAdjacencyOcc() { return true; } static void Name(std::vector & name){name.push_back(std::string("HHAdj"));T::Name(name);} private: typename T::HEdgePointer _ep[2] ; int _zp[2] ; }; /*----------------------------- HENextADJ ------------------------------*/ template class EmptyHNextAdj: public T { public: typename T::HEdgePointer &HNp( ) { static typename T::HEdgePointer ep=0; assert(0); return ep; } typename T::HEdgePointer const cHNp( ) const { static typename T::HEdgePointer ep=0; assert(0); return ep; } template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static bool HasHNextAdjacency() { return false; } static bool HasHNextAdjacencyOcc() { return false; } static void Name(std::vector & name){ T::Name(name);} }; template class HNextAdj: public T { public: HNextAdj(){_nep=0;} typename T::HEdgePointer &HNp() {return _nep; } typename T::HEdgePointer const cHNp() const {return _nep; } template < class LeftV> void ImportData(const LeftV & left ) { this->EEp() = NULL; T::ImportData( left); } static bool HasHNextAdjacency() { return true; } static void Name(std::vector & name){name.push_back(std::string("HNextAdj"));T::Name(name);} private: typename T::HEdgePointer _nep ; }; /*----------------------------- HEOppADJ ------------------------------*/ template class EmptyHOppAdj: public T { public: typename T::HEdgePointer &HOp() { static typename T::HEdgePointer ep=0; assert(0); return ep; } typename T::HEdgePointer const cHOp() const { static typename T::HEdgePointer ep=0; assert(0); return ep; } int &EEi(){static int z=0; return z;} template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static bool HasHOppAdjacency() { return false; } static bool HasHOpptAdjacencyOcc() { return false; } static void Name(std::vector & name){ T::Name(name);} }; template class HOppAdj: public T { public: HOppAdj(){_oep=0;} typename T::HEdgePointer &HOp() {return _oep; } typename T::HEdgePointer cHOp() {return _oep; } template < class LeftV> void ImportData(const LeftV & left ) { this->HOp() = NULL; T::ImportData( left); } static bool HasHOppAdjacency() { return true; } static void Name(std::vector & name){name.push_back(std::string("HOppAdj"));T::Name(name);} private: typename T::HEdgePointer _oep ; }; /*----------------------------- HPrevADJ ------------------------------*/ template class EmptyHPrevAdj: public T { public: typename T::HEdgePointer &HPp() { static typename T::HEdgePointer ep=0; assert(0); return ep; } typename T::HEdgePointer const cHPp() const { static typename T::HEdgePointer ep=0; assert(0); return ep; } int &EEi(){static int z=0; return z;} template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static bool HasHPrevAdjacency() { return false; } static bool HasHPrevAdjacencyOcc() { return false; } static void Name(std::vector & name){ T::Name(name);} }; template class HPrevAdj: public T { public: HPrevAdj(){_pep=0;} typename T::HEdgePointer &HPp() {return _pep; } typename T::HEdgePointer cHPp() {return _pep; } int &EEi(const int & i) {return this->_nei[i]; } template < class LeftV> void ImportData(const LeftV & left ) { this->EEp() = NULL; T::ImportData( left); } static bool HasHPrevAdjacency() { return true; } static void Name(std::vector & name){name.push_back(std::string("HPrevAdj"));T::Name(name);} private: typename T::HEdgePointer _pep ; }; /*----------------------------- HFADJ ------------------------------*/ template class EmptyHFAdj: public T { public: typename T::FacePointer &HFp() { static typename T::FacePointer fp=0; assert(0); return fp; } typename T::FacePointer const cHFp() const { static typename T::FacePointer fp=0; assert(0); return fp; } int &EFi(){static int z=0; return z;} template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static bool HasHFAdjacency() { return false; } static bool HasHFAdjacencyOcc() { return false; } static void Name(std::vector & name){ T::Name(name);} }; template class HFAdj: public T { public: HFAdj(){_fp=0;} typename T::FacePointer &HFp() {return _fp; } typename T::FacePointer cHFp() {return _fp; } int &EFi() {return _zp; } template < class LeftV> void ImportData(const LeftV & left ) { this->EFp() = NULL; T::ImportData( left); } static bool HasHFAdjacency() { return true; } static bool HasHFAdjacencyOcc() { return true; } static void Name(std::vector & name){name.push_back(std::string("HFAdj"));T::Name(name);} private: typename T::FacePointer _fp ; int _zp ; }; /*----------------------------- HFADJ ------------------------------*/ /** HEdgeData keep all the data for the half edge */ template class EmptyHEdgeData : public EmptyHFAdj< // pointer to the face EmptyHOppAdj < // pointer to the opposite half edge EmptyHNextAdj < // pointer to the next half edge along the face EmptyHVAdj < // pointer to the vertex EmptyHEAdj < // pointer to the edge EmptyHPrevAdj< T > > > > > > {}; template class HEdgeData : public HFAdj< // pointer to the face HOppAdj < // pointer to the opposite half edge HNextAdj < // pointer to the next half edge along the face HVAdj < // pointer to the vertex HEAdj < // pointer to the edge T > > > > > { public: // functions to make the half edge user confortable typename T::VertexPointer & Vertex() { return this->HVp();} const typename T::VertexPointer & cVertex() const { return this->cHVp();} typename T::HEdgePointer Opposite() { return this->HOp();} const typename T::HEdgePointer & cOpposite() const { return this->cHOp();} typename T::HEdgePointer & Next() { return this->HNp();} const typename T::HEdgePointer & cNext() const { return this->HNp();} }; } // end namespace edge }// end namespace vcg #endif