/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_TRIANGLE3 #define __VCG_TRIANGLE3 #include #include #include #include #include #include namespace vcg { /** \addtogroup space */ /*@{*/ /** Templated class for storing a generic triangle in a 3D space. Note the relation with the Face class of TriMesh complex, both classes provide the P(i) access functions to their points and therefore they share the algorithms on it (e.g. area, normal etc...) */ template class Triangle3 { public: typedef ScalarTriangleType ScalarType; typedef Point3< ScalarType > CoordType; /// The bounding box type typedef Box3 BoxType; /********************************************* blah blah **/ Triangle3(){} Triangle3(const CoordType & c0,const CoordType & c1,const CoordType & c2){_v[0]=c0;_v[1]=c1;_v[2]=c2;} protected: /// Vector of vertex pointer incident in the face Point3 _v[3]; public: /// Shortcut per accedere ai punti delle facce inline CoordType & P( const int j ) { return _v[j];} inline CoordType & P0( const int j ) { return _v[j];} inline CoordType & P1( const int j ) { return _v[(j+1)%3];} inline CoordType & P2( const int j ) { return _v[(j+2)%3];} inline const CoordType & P( const int j ) const { return _v[j];} inline const CoordType & cP( const int j ) const { return _v[j];} inline const CoordType & P0( const int j ) const { return _v[j];} inline const CoordType & P1( const int j ) const { return _v[(j+1)%3];} inline const CoordType & P2( const int j ) const { return _v[(j+2)%3];} inline const CoordType & cP0( const int j ) const { return _v[j];} inline const CoordType & cP1( const int j ) const { return _v[(j+1)%3];} inline const CoordType & cP2( const int j ) const { return _v[(j+2)%3];} }; //end Class /********************** Normal **********************/ /// Returns the normal to the plane passing through p0,p1,p2 template Point3 Normal(const TriangleType &t) { return (( t.P(1) - t.P(0)) ^ (t.P(2) - t.P(0))); } template Point3Type Normal( Point3Type const &p0, Point3Type const & p1, Point3Type const & p2) { return (( p1 - p0) ^ (p2 - p0)); } /// Like the above, it returns the normal to the plane passing through p0,p1,p2, but normalized. template Point3 NormalizedNormal(const TriangleType &t) { return (( t.P(1) - t.P(0)) ^ (t.P(2) - t.P(0))).Normalize(); } template Point3Type NormalizedNormal( Point3Type const &p0, Point3Type const & p1, Point3Type const & p2) { return (( p1 - p0) ^ (p2 - p0)).Normalize(); } /********************** Interpolation **********************/ // The function to computing barycentric coords of a point inside a triangle. // it requires the knowledge of what is the direction that is more orthogonal to the face plane. // Usually this info can be stored in a bit of the face flags (see updateFlags::FaceProjection(MeshType &m) ) // and accessing the field with // if(fp->Flags() & FaceType::NORMX ) axis = 0; // else if(fp->Flags() & FaceType::NORMY ) axis = 1; // else axis =2; // InterpolationParameters(*fp,axis,Point,L); // This normal direction is used to project the triangle in 2D and solve the problem in 2D where it is simpler and often well defined. template bool InterpolationParameters(const TriangleType t, const int Axis, const Point3 & P, Point3 & L) { Point2 test; typedef Point2 P2; if(Axis==0) return InterpolationParameters2( P2(t.P(0)[1],t.P(0)[2]), P2(t.P(1)[1],t.P(1)[2]), P2(t.P(2)[1],t.P(2)[2]), P2(P[1],P[2]), L); if(Axis==1) return InterpolationParameters2( P2(t.P(0)[0],t.P(0)[2]), P2(t.P(1)[0],t.P(1)[2]), P2(t.P(2)[0],t.P(2)[2]), P2(P[0],P[2]), L); if(Axis==2) return InterpolationParameters2( P2(t.P(0)[0],t.P(0)[1]), P2(t.P(1)[0],t.P(1)[1]), P2(t.P(2)[0],t.P(2)[1]), P2(P[0],P[1]), L); return false; } /// Handy Wrapper of the above one that uses the passed normal N to choose the right orientation template bool InterpolationParameters(const TriangleType t, const Point3 & N, const Point3 & P, Point3 & L) { if(N[0]>N[1]) { if(N[0]>N[2]) return InterpolationParameters(t,0,P,L); /* 0 > 1 ? 2 */ else return InterpolationParameters(t,2,P,L); /* 2 > 1 ? 2 */ } else { if(N[1]>N[2]) return InterpolationParameters(t,1,P,L); /* 1 > 0 ? 2 */ else return InterpolationParameters(t,2,P,L); /* 2 > 1 ? 2 */ } } // Function that computes the barycentric coords of a 2D triangle. template bool InterpolationParameters2(const Point2 &V1, const Point2 &V2, const Point2 &V3, const Point2 &P, Point3 &L) { vcg::Triangle2 t2=vcg::Triangle2(V1,V2,V3); return (t2.InterpolationParameters(P,L.X(),L.Y(),L.Z() )); } /// Handy Wrapper of the above one that calculate the normal on the triangle template bool InterpolationParameters(const TriangleType t, const Point3 & P, Point3 & L) { vcg::Point3 N=vcg::Normal(t); return (InterpolationParameters(t,N,P,L)); } /********************** Quality **********************/ /// Compute a shape quality measure of the triangle composed by points p0,p1,p2 /// It Returns 2*AreaTri/(MaxEdge^2), /// the range is range [0.0, 0.866] /// e.g. Equilateral triangle sqrt(3)/2, halfsquare: 1/2, ... up to a line that has zero quality. template P3ScalarType Quality( Point3 const &p0, Point3 const & p1, Point3 const & p2) { Point3 d10=p1-p0; Point3 d20=p2-p0; Point3 d12=p1-p2; Point3 x = d10^d20; P3ScalarType a = Norm( x ); if(a==0) return 0; // Area zero triangles have surely quality==0; P3ScalarType b = SquaredNorm( d10 ); if(b==0) return 0; // Again: area zero triangles have surely quality==0; P3ScalarType t = b; t = SquaredNorm( d20 ); if ( b typename TriangleType::ScalarType QualityFace(const TriangleType &t) { return Quality(t.cP(0), t.cP(1), t.cP(2)); } /// Compute a shape quality measure of the triangle composed by points p0,p1,p2 /// It Returns inradius/circumradius /// the range is range [0, 1] /// e.g. Equilateral triangle 1, halfsquare: 0.81, ... up to a line that has zero quality. template P3ScalarType QualityRadii(Point3 const &p0, Point3 const &p1, Point3 const &p2) { P3ScalarType a=(p1-p0).Norm(); P3ScalarType b=(p2-p0).Norm(); P3ScalarType c=(p1-p2).Norm(); P3ScalarType sum = (a + b + c)*0.5; P3ScalarType area2 = sum*(a+b-sum)*(a+c-sum)*(b+c-sum); if(area2 <= 0) return 0; //circumradius: (a*b*c)/(4*sqrt(area2)) //inradius: (a*b*c)/(4*circumradius*sum) => sqrt(area2)/sum; return (8*area2)/(a*b*c*sum); } /// Compute a shape quality measure of the triangle composed by points p0,p1,p2 /// It Returns mean ratio 2sqrt(a, b)/(a+b) where a+b are the eigenvalues of the M^tM of the /// transformation matrix into a regular simplex /// the range is range [0, 1] template P3ScalarType QualityMeanRatio(Point3 const &p0, Point3 const &p1, Point3 const &p2) { P3ScalarType a=(p1-p0).Norm(); P3ScalarType b=(p2-p0).Norm(); P3ScalarType c=(p1-p2).Norm(); P3ScalarType sum = (a + b + c)*0.5; //semiperimeter P3ScalarType area2 = sum*(a+b-sum)*(a+c-sum)*(b+c-sum); if(area2 <= 0) return 0; return (4.0*sqrt(3.0)*sqrt(area2))/(a*a + b*b + c*c); } /// Return the Double of area of the triangle // NOTE the old Area function has been removed to intentionally // cause compiling error that will help people to check their code... // A some people used Area assuming that it returns the double and some not. // So please check your codes!!! // And please DO NOT Insert any Area named function here! template typename TriangleType::ScalarType DoubleArea(const TriangleType &t) { return Norm( (t.P(1) - t.P(0)) ^ (t.P(2) - t.P(0)) ); } template typename TriangleType::ScalarType CosWedge(const TriangleType &t, int k) { typename TriangleType::CoordType e0 = t.P((k+1)%3) - t.P(k), e1 = t.P((k+2)%3) - t.P(k); return (e0*e1)/(e0.Norm()*e1.Norm()); } template Point3 Barycenter(const TriangleType &t) { return ((t.P(0)+t.P(1)+t.P(2))/(typename TriangleType::ScalarType) 3.0); } template typename TriangleType::ScalarType Perimeter(const TriangleType &t) { return Distance(t.P(0),t.P(1))+ Distance(t.P(1),t.P(2))+ Distance(t.P(2),t.P(0)); } template Point3 Circumcenter(const TriangleType &t) { typename TriangleType::ScalarType a2 = (t.P(1) - t.P(2)).SquaredNorm(); typename TriangleType::ScalarType b2 = (t.P(2) - t.P(0)).SquaredNorm(); typename TriangleType::ScalarType c2 = (t.P(0) - t.P(1)).SquaredNorm(); Point3c = t.P(0)*a2*(-a2 + b2 + c2) + t.P(1)*b2*( a2 - b2 + c2) + t.P(2)*c2*( a2 + b2 - c2); c /= 2*(a2*b2 + a2*c2 + b2*c2) - a2*a2 - b2*b2 - c2*c2; return c; } } // end namespace #endif