/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ ****************************************************************************/ #ifndef __VCG_MINDISTPOINT #define __VCG_MINDISTPOINT #include #include #include #include #include #include using namespace vcg; /* aka MetroCore data una mesh m e una ug sulle sue facce trova il punto di m piu' vicino ad un punto dato. */ // input: mesh, punto, griglia, distanza limite // output: normale alla faccia e punto piu' vicino su di essa // Nota che il parametro template GRID non ci dovrebbe essere, visto che deve essere // UGrid, ma non sono riuscito a definirlo implicitamente template void MinDistPoint( MESH & mesh, const Point3 & p, GRID & gr, SCALAR & mdist, Point3 & normf, Point3 & bestq, typename MESH::FaceType * &f, Point3 &ip) { typedef SCALAR scalar; typedef Point3 Point3x; typedef Box3 Box3x; if(!gr.bbox.IsIn(p)) return; typedef typename GridStaticPtr::Link A2UGridLink; scalar ax = p[0] - gr.bbox.min[0]; // Real coodinate of point refer to scalar ay = p[1] - gr.bbox.min[1]; scalar az = p[2] - gr.bbox.min[2]; int gx = int( ax/gr.voxel[0] ); // Integer coordinate of the point int gy = int( ay/gr.voxel[1] ); // voxel int gz = int( az/gr.voxel[2] ); scalar vx = gr.bbox.min[0]+gx*gr.voxel[0]; // Real world coordinate of the Voxel scalar vy = gr.bbox.min[1]+gy*gr.voxel[1]; // origin scalar vz = gr.bbox.min[2]+gz*gr.voxel[2]; scalar dx = math::Min(p[0] - vx, vx+gr.voxel[0]-p[0]); // Dist from the voxel scalar dy = math::Min(p[1] - vy, vy+gr.voxel[1]-p[1]); scalar dz = math::Min(p[2] - vz, vz+gr.voxel[2]-p[2]); scalar vdist,vstep; if(dxElem())) ) { if( Dist((*(l->Elem())), p, error, q) ) { bestq = q; bestf = l->Elem(); typename MESH::ScalarType alfa=1, beta=1, gamma=1; //bestf->InterpolationParameters(q, alfa, beta); //calcolo normale con interpolazione trilineare /*normf = (1-(alfa+beta))*(bestf->V(0)->Normal())+ (alfa*(bestf->V(1)->Normal()))+ (beta*(bestf->V(2)->Normal()));*/ bool ret=bestf->InterpolationParameters(q, alfa, beta, gamma); //assert(ret); normf = (bestf->V(0)->cN())*alfa+ (bestf->V(1)->cN())*beta+ (bestf->V(2)->cN())*gamma; normf.Normalize(); ip[0]=alfa;ip[1]=beta;ip[2]=gamma; } mesh.Mark( &*(l->Elem()) ); } } else { for(int ix=gx-s;ix<=gx+s;++ix) if( ix>=0 && ix=0 && iy=0 && izElem())) ) { if( Dist((*(l->Elem())), p, error, q) ) { bestq = q; bestf = l->Elem(); typename MESH::ScalarType alfa, beta, gamma; //bestf->InterpolationParameters(q, alfa, beta); //calcolo normale con interpolazione trilineare bestf->InterpolationParameters(q, alfa, beta, gamma); normf = (bestf->V(0)->cN())*alfa+ (bestf->V(1)->cN())*beta+ (bestf->V(2)->cN())*gamma ; ip[0]=alfa;ip[1]=beta;ip[2]=gamma; //normf.Normalize(); inutile si assume le normali ai vertici benfatte } mesh.Mark(&*l->Elem()); } } } } } if( fabs(error) void MinDistPoint( MESH & mesh, const Point3 & p, GRID & gr, SCALAR & mdist, Point3 & normf, Point3 & bestq, typename MESH::face_type * &f) { Point3 ip; MinDistPoint(mesh,p,gr,mdist,normf,bestq,f,ip); } #endif