/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.6 2007/05/08 12:11:58 pietroni added circle-line intersection ****************************************************************************/ #ifndef __VCGLIB_INTERSECTION_2 #define __VCGLIB_INTERSECTION_2 #include #include #include #include #include #include #include namespace vcg { /** \addtogroup space */ /*@{*/ /** Function computing the intersection between couple of geometric primitives in 2 dimension */ /// return true if the algle is convex (right rotation) template inline bool Convex(const Point2 & p0,const Point2 & p1,const Point2 & p2) { const SCALAR_TYPE EPS= SCALAR_TYPE(1e-8); return (((p0-p1)^(p2-p1))<=EPS); } ///return if exist the intersection point ///between 2 lines in a 2d plane template inline bool LineLineIntersection(const vcg::Line2 & l0, const vcg::Line2 & l1, Point2 &p) { const SCALAR_TYPE Eps= SCALAR_TYPE(1e-8); ///first line SCALAR_TYPE x1=l0.Origin().X(); SCALAR_TYPE y1=l0.Origin().Y(); SCALAR_TYPE x2=x1+l0.Direction().X(); SCALAR_TYPE y2=y1+l0.Direction().Y(); ///second line SCALAR_TYPE x3=l1.Origin().X(); SCALAR_TYPE y3=l1.Origin().Y(); SCALAR_TYPE x4=x3+l1.Direction().X(); SCALAR_TYPE y4=y3+l1.Direction().Y(); ///then find intersection ///denominator SCALAR_TYPE den=((x1-x2)*(y3-y4))-((y1-y2)*(x3-x4)); if (fabs(den) inline bool RayLineIntersection(const vcg::Line2 & l, const vcg::Ray2 & r, Point2 &p) { ///construct line from ray vcg::Line2 l_test; l_test.Set(r.Origin(),r.Direction()); if (!LineLineIntersection(l,l_test,p)) return false; Point2 dir=p-r.Origin(); dir.Normalize(); return (dir*r.Direction()>0); } /// interseciton between point and triangle template inline bool RaySegmentIntersection(const vcg::Ray2 & r, const vcg::Segment2 &seg, Point2 &p_inters) { ///first compute intersection between lines vcg::Line2 line2; line2.SetOrigin(seg.P0()); vcg::Point2 dir=seg.P1()-seg.P0(); dir.Normalize(); line2.SetDirection(dir); if(!RayLineIntersection(line2,r,p_inters)) return false; ///then test if intersection point is nearest ///to both extremes then length of the segment SCALAR_TYPE d0=(seg.P1()-p_inters).Norm(); SCALAR_TYPE d1=(seg.P0()-p_inters).Norm(); SCALAR_TYPE length=(seg.P0()-seg.P1()).Norm(); return ((d0 inline bool RayBoxIntersection(const vcg::Ray2 & r, const vcg::Box2 &bbox, Point2 &p_inters) { ///first create the 4 segments vcg::Segment2 S[4]; for (int i=0;i<4;i++) S[i]=vcg::Segment2(bbox.P(i),bbox.P((i+1)%4)); SCALAR_TYPE mind=std::numeric_limits::max(); bool found=false; for (int i=0;i<4;i++) { Point2 p_inters_test; if (!RaySegmentIntersection(r,S[i],p_inters_test))continue; SCALAR_TYPE Norm=(p_inters_test-r.Origin()).Norm(); if (Norm inline bool LineSegmentIntersection(const vcg::Line2 & line, const vcg::Segment2 &seg, Point2 &p_inters) { ///first compute intersection between lines vcg::Line2 line2; line2.SetOrigin(seg.P0()); vcg::Point2 dir=seg.P1()-seg.P0(); dir.Normalize(); line2.SetDirection(dir); if(!LineLineIntersection(line,line2,p_inters)) return false; ///then test if intersection point is nearest ///to both extremes then length of the segment SCALAR_TYPE d0=(seg.P1()-p_inters).Norm(); SCALAR_TYPE d1=(seg.P0()-p_inters).Norm(); SCALAR_TYPE length=(seg.P0()-seg.P1()).Norm(); return ((d0 inline bool SegmentSegmentIntersection(const vcg::Segment2 &seg0, const vcg::Segment2 &seg1, Point2 &p_inters) { const SCALAR_TYPE Eps= SCALAR_TYPE(1e-8); SCALAR_TYPE lambda0,lambda1; const Point2 & p0 = seg0.P0(); const Point2 & p1 = seg0.P1(); const Point2 & p2 = seg1.P0(); const Point2 & p3 = seg1.P1(); SCALAR_TYPE a = (p1-p0)[0]; SCALAR_TYPE b = (p2-p3)[0]; SCALAR_TYPE c = (p1-p0)[1]; SCALAR_TYPE d = (p2-p3)[1]; SCALAR_TYPE e = (p2-p0)[0]; SCALAR_TYPE f = (p2-p0)[1]; SCALAR_TYPE det = a*d-b*c; lambda0 = (d*e-b*f)/det; lambda1 = (-c*e+a*f)/det; if (fabs(det)= 0.0 && lambda0 <= 1.0 && lambda1 >= 0.0 && lambda1 <= 1.0)) return false; p_inters = p0*(1-lambda0)+p1*lambda0; return true; } /// interseciton between point and triangle template inline bool IsInsideTrianglePoint( const Triangle2 & t,const Point2 & p) { Point2 p0=t.P0(0); Point2 p1=t.P0(1); Point2 p2=t.P0(2); ///first test with bounding box vcg::Box2 b2d; b2d.Add(p0); b2d.Add(p1); b2d.Add(p2); if (!b2d.IsIn(p)) return false; ///then text convex if (!Convex(p0,p1,p2)) std::swap >(p1,p2); return((Convex(p,p0,p1))&&(Convex(p,p1,p2))&&(Convex(p,p2,p0))); //return((Convex(p,p0,p1))&&(Convex(p,p1,p2))&&(Convex(p,p2,p0))); } template bool TriangleTriangleIntersect2D(const vcg::Triangle2 &tr0, const vcg::Triangle2 &tr1) { ///test BBox Intersection vcg::Box2 bbtr0; bbtr0.Add(tr0.P(0)); bbtr0.Add(tr0.P(1)); bbtr0.Add(tr0.P(2)); vcg::Box2 bbtr1; bbtr1.Add(tr1.P(0)); bbtr1.Add(tr1.P(1)); bbtr1.Add(tr1.P(2)); if (!bbtr0.Collide(bbtr1)) return false; ///test vertex in face for (int i=0;i<3;i++) { bool inside0=vcg::IsInsideTrianglePoint(tr0,tr1.P(i)); bool inside1=vcg::IsInsideTrianglePoint(tr1,tr0.P(i)); if (inside0 || inside1) return true; } ///test segment ///to segment intersection for (int i=0;i<3;i++) { for (int j=0;j<3;j++) { if (i>j) continue; vcg::Segment2 seg0=vcg::Segment2(tr0.P(i),tr0.P((i+1)%3)); vcg::Segment2 seg1=vcg::Segment2(tr1.P(j),tr1.P((j+1)%3)); vcg::Point2 p_inters; bool intersect=SegmentSegmentIntersection(seg0,seg1,p_inters); if (intersect) return true; } } return false; } template bool PointInsidePolygon(vcg::Point2 p, const std::vector > &polygon) { int n=polygon.size(); vcg::Box2 BB; for (int i=0;i r; vcg::Point2 direct=vcg::Point2(0,0); switch (dir) { case 0 : direct.X()=1;break; case 1 : direct.Y()=1;break; case 2 : direct.X()=-1; break; default :direct.Y()=-1; } r.SetOrigin(p); r.SetDirection(direct); for (int i=0;i p_inters; if (vcg::RaySegmentIntersection(r,polygon[i],p_inters))intersection++; } if ((intersection%2)==1) inside_test++; } return(inside_test>2); } //intersection between a circle and a line template inline bool CircleLineIntersection(const vcg::Line2 & line, const vcg::Point2 ¢er, const ScalarType &radius, vcg::Point2 &p0, vcg::Point2 &p1) { ///translate with origin on the center ScalarType x1,x2,y1,y2; x1=line.Origin().X()-center.X(); y1=line.Origin().Y()-center.Y(); x2=x1+line.Direction().X(); y2=y1+line.Direction().Y(); ScalarType dx,dy,dr,D,delta,sign; dx=x2-x1; dy=y2-y1; dr=sqrt(dx*dx+dy*dy); D=x1*y2-x2*y1; delta=radius*radius*dr*dr-D*D; if (dy>=0) sign=1; else sign=-1; if (delta<0.000001) return false;///no intersection else { p0.X()=(D*dy+sign*dx*sqrt(delta))/dr*dr; p0.Y()=(-D*dx+fabs(dy)*sqrt(delta))/dr*dr; p1.X()=(D*dy-sign*dx*sqrt(delta))/dr*dr; p1.Y()=(-D*dx-fabs(dy)*sqrt(delta))/dr*dr; p0+=center; p1+=center; return true; } } // Ray-Segment Functor class RaySegmentIntersectionFunctor { public: template inline bool operator () (const SEGMENTTYPE & S, const Ray2 & ray, SCALARTYPE & t) { typedef SCALARTYPE ScalarType; typedef vcg::Point2 CoordType; CoordType inters_test; bool bret = RaySegmentIntersection(ray,S, inters_test); if (bret) t=(inters_test-ray.Origin()).Norm(); return (bret); } }; /*@}*/ } // end namespace #endif