/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef POLYGON_H #define POLYGON_H #include #include #include #include #include namespace vcg { ////return true if the //template //bool CheckNormalizedCoords(CoordType dir) //{ // typedef typename CoordType::ScalarType ScalarType; // if(isnan(dir.X()))return false; // if(isnan(dir.Y()))return false; // if(isnan(dir.Z()))return false; // ScalarType Norm=dir.Norm(); // if(fabs(Norm-1.f)>0.01f)return false; // return true; //} //return per vertex Normals of a polygonal face stored as a vector of coords template void GetNormals(std::vector &Pos, std::vector &Norms) { Norms.clear(); int size=Pos.size(); if (size<=2) return; for (int i=0;i CoordType Normal(std::vector &Pos) { std::vector Norms; GetNormals(Pos,Norms); if (Norms.size()==0) return(CoordType(1,0,0)); CoordType NSum=CoordType(0,0,0); for (size_t i=0;i typename CoordType::ScalarType Area(const std::vector &Pos) { typedef typename CoordType::ScalarType ScalarType; CoordType bary=CoordType(0,0,0); for (size_t i=0;i T(p0,p1,p2); Area+=(vcg::DoubleArea(T)/2); } return Area; } //return per vertex Normals of a polygonal face template void PolyNormals(const PolygonType &F, std::vector &Norms) { Norms.clear(); if (F.VN()<=2) return; for (int i=0;i typename PolygonType::CoordType PolyBarycenter(const PolygonType &F) { typename PolygonType::CoordType bary(0,0,0); for (int i=0;i typename PolygonType::ScalarType PolyArea(const PolygonType &F) { typedef typename PolygonType::CoordType CoordType; typedef typename PolygonType::ScalarType ScalarType; CoordType bary=PolyBarycenter(F); ScalarType Area=0; for (size_t i=0;i<(size_t)F.VN();i++) { CoordType p0=F.cP0(i); CoordType p1=F.cP1(i); CoordType p2=bary; vcg::Triangle3 T(p0,p1,p2); Area+=(vcg::DoubleArea(T)/2); } return Area; } //return the normal of a polygonal face template typename PolygonType::CoordType PolygonNormal(const PolygonType &F) { typename PolygonType::CoordType n(0,0,0); for (int i=0;i typename PolygonType::ScalarType PolyPerimeter(const PolygonType &F) { typedef typename PolygonType::ScalarType ScalarType; ScalarType SumL=0; for (int i=0;i typename PolygonType::ScalarType PolyNormDeviation(const PolygonType &F) { typedef typename PolygonType::CoordType CoordType; typedef typename PolygonType::ScalarType ScalarType; std::vector Norms; PolyNormals(F,Norms); //calculate the Avg Normal CoordType AvgNorm(0,0,0); for (int i=0;i void PolyAngleDeviation(const PolygonType &F, typename PolygonType::ScalarType &AvgDev, typename PolygonType::ScalarType &MaxDev) { typedef typename PolygonType::CoordType CoordType; typedef typename PolygonType::ScalarType ScalarType; assert(F.VN()>2); ScalarType IdealAngle=M_PI-(2*M_PI/(ScalarType)F.VN()); assert(IdealAngle>0); //then compute the angle deviation MaxDev=0; AvgDev=0; for (int i=0;i=0); ScalarType VAngleDiff=fabs(VAngle-IdealAngle); if (VAngleDiff>MaxDev)MaxDev=VAngleDiff; AvgDev+=VAngleDiff; } AvgDev/=(ScalarType)F.VN(); AvgDev/=(M_PI/2.0); MaxDev/=(M_PI/2.0); if (AvgDev>1)AvgDev=1; if (MaxDev>1)MaxDev=1; } //return the fitting plane of a polygonal face template vcg::Plane3 PolyFittingPlane(const PolygonType &F) { typedef typename PolygonType::CoordType CoordType; typedef typename PolygonType::ScalarType ScalarType; vcg::Plane3 BestPL; assert(F.VN()>=3); std::vector pointVec; for (int i=0;i typename PolygonType::ScalarType PolyFlatness(const PolygonType &F) { typedef typename PolygonType::CoordType CoordType; typedef typename PolygonType::ScalarType ScalarType; if (F.VN()<=3) return 0; //average lenght ScalarType SumL=PolyPerimeter(F)/2.0; //diagonal distance vcg::Plane3 BestPL=PolyFittingPlane(F); //then project points on the plane ScalarType Flatness=0; for (int i=0;i void PolyPCA(const PolygonType &F, typename PolygonType::CoordType PCA[]) { typedef typename PolygonType::CoordType CoordType; typedef typename PolygonType::ScalarType ScalarType; //compute the covariance matrix Eigen::Matrix3d EigenCovMat; //ComputeCovarianceMatrix(EigenCovMat); //compute covariance matrix ///compute the barycenter CoordType Barycenter=PolyBarycenter(F); // second cycle: compute the covariance matrix EigenCovMat.setZero(); Eigen::Vector3d p; for (int i=0;i eig(EigenCovMat); Eigen::Vector3d eval = eig.eigenvalues(); Eigen::Matrix3d evec = eig.eigenvectors(); eval = eval.cwiseAbs(); int normInd,maxInd,minInd; ///get min and max coff .. ///the minumum is the Normal ///the other two the anisotropy directions eval.minCoeff(&normInd); eval.maxCoeff(&maxInd); minInd=(maxInd+1)%3; if (minInd==normInd)minInd=(normInd+1)%3; assert((minInd!=normInd)&&(minInd!=maxInd)&&(minInd!=maxInd)); ///maximum direction of PCA PCA[0][0] = evec(0,maxInd); PCA[0][1] = evec(1,maxInd); PCA[0][2] = evec(2,maxInd); ///minimum direction of PCA PCA[1][0] = evec(0,minInd); PCA[1][1] = evec(1,minInd); PCA[1][2] = evec(2,minInd); ///Normal direction PCA[2][0] = evec(0,normInd); PCA[2][1] = evec(1,normInd); PCA[2][2] = evec(2,normInd); ScalarType LX=sqrt(eval[maxInd]); ScalarType LY=sqrt(eval[minInd]); //ScalarType LZ=sqrt(eval[normInd]); ///scale the directions PCA[0]*=LX; PCA[1]*=LY; //PCA[2]*=LZ;//.Normalize(); PCA[2].Normalize(); } //evaluate the PCA directions of a polygonal face //scaled by the area of the face template void PolyScaledPCA(const PolygonType &F, typename PolygonType::CoordType PCA[]) { typedef typename PolygonType::CoordType CoordType; typedef typename PolygonType::ScalarType ScalarType; std::vector SwapPos; ///compute the barycenter //CoordType Barycenter=PolyBarycenter(F); ///compute the Area ScalarType Area=PolyArea(F); PolyPCA(F,PCA); ScalarType Scale=sqrt(Area/(PCA[0].Norm()*PCA[1].Norm())); PCA[0]*=Scale; PCA[1]*=Scale; } //return the base template polygon as //described by "Static Aware Grid Shells" by Pietroni et Al. template void getBaseTemplatePolygon(int N, std::vector &TemplatePos) { typedef typename CoordType::ScalarType ScalarType; ///first find positions in the ///reference frame of the passed matrix ScalarType AngleInterval=2.0*M_PI/(ScalarType)N; ScalarType CurrAngle=0; TemplatePos.resize(N); for (size_t i=0;i void GetPolyTemplatePos(const PolygonType &F, std::vector &TemplatePos, bool force_isotropy=false) { typedef typename PolygonType::CoordType CoordType; typedef typename PolygonType::ScalarType ScalarType; std::vector UniformPos,UniformTempl; CoordType Barycenter=PolyBarycenter(F); getBaseTemplatePolygon(F.VN(),TemplatePos); CoordType PCA[3]; PolyPCA(F,PCA); vcg::Matrix44 ToPCA,ToPCAInv; ToPCA.SetIdentity(); CoordType dirX=PCA[0]; CoordType dirY=PCA[1]; CoordType dirZ=PCA[2]; if (force_isotropy) { dirX.Normalize(); dirY.Normalize(); dirZ.Normalize(); // CoordType dirXN=dirX;dirXN.Normalize(); // CoordType dirYN=dirY;dirYN.Normalize(); // CoordType dirZN=dirZ;dirZN.Normalize(); // dirX=dirX*0.8+dirXN*0.2; // dirY=dirY*0.8+dirYN*0.2; // dirZ=dirZ*0.8+dirZN*0.2; } ///set the Rotation matrix ToPCA.SetColumn(0,dirX); ToPCA.SetColumn(1,dirY); ToPCA.SetColumn(2,dirZ); ToPCAInv=ToPCA; ToPCA=vcg::Inverse(ToPCA); ///then transform the polygon to PCA space for (int i=0;i0) // { // AreaUniform*=(AreaUniform/TargetArea); // } ScalarType Scale=sqrt(AreaTemplate/AreaUniform); for (size_t i=0;i FixPoints(UniformPos.begin(),UniformPos.end()); std::vector MovPoints(TemplatePos.begin(),TemplatePos.end()); ///add displacement along Z for (size_t i=0;i Rigid; ///compute rigid match vcg::ComputeRigidMatchMatrix(FixPoints,MovPoints,Rigid); ///then apply transformation UniformTempl.resize(TemplatePos.size(),CoordType(0,0,0)); for (size_t i=0;i typename PolygonType::ScalarType PolyAspectRatio(const PolygonType &F, bool isotropic=false) { typedef typename PolygonType::CoordType CoordType; typedef typename PolygonType::ScalarType ScalarType; std::vector TemplatePos; GetPolyTemplatePos(F,TemplatePos,isotropic); ScalarType diff=0; assert((int)TemplatePos.size()==F.VN()); ScalarType AreaP=PolyArea(F); for (size_t i=0;i typename PolygonType::ScalarType PolygonPointDistance(const PolygonType &F, const vcg::Point3 &pos, vcg::Point3 &ClosestP) { typedef typename PolygonType::ScalarType ScalarType; typedef typename PolygonType::CoordType CoordType; ScalarType minD=std::numeric_limits::max(); CoordType bary=vcg::PolyBarycenter(F); for (size_t j=0;j T(F.cP0(j),F.cP1(j),bary); ScalarType dist; CoordType closest; vcg::TrianglePointDistance(T,pos,dist,closest); if (dist>minD)continue; minD=dist; ClosestP=closest; } return minD; } template vcg::Box3 PolygonBox(const PolygonType &F) { typedef typename PolygonType::ScalarType ScalarType; vcg::Box3 bb; for (size_t j=0;jP()); return bb; } } #endif // POLYGON_H