/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_TRI_UPDATE_FLAGS #define __VCG_TRI_UPDATE_FLAGS namespace vcg { namespace tri { /// \ingroup trimesh /// \headerfile flag.h vcg/complex/algorithms/update/flag.h /// \brief Management, updating and computation of per-vertex and per-face flags (like border flags). /** This class is used to compute or update some of the flags that can be stored in the mesh components. For now just Border flags (e.g. the flag that tells if a given edge of a face belong to a border of the mesh or not). */ template class UpdateFlags { public: typedef UpdateMeshType MeshType; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::EdgeType EdgeType; typedef typename MeshType::EdgePointer EdgePointer; typedef typename MeshType::EdgeIterator EdgeIterator; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::TetraType TetraType; typedef typename MeshType::TetraPointer TetraPointer; typedef typename MeshType::TetraIterator TetraIterator; /// \brief Reset all the mesh flags (vertexes edge faces) setting everithing to zero (the default value for flags) static void Clear(MeshType &m) { if(HasPerVertexFlags(m) ) for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi) (*vi).Flags() = 0; if(HasPerEdgeFlags(m) ) for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei) (*ei).Flags() = 0; if(HasPerFaceFlags(m) ) for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi) (*fi).Flags() = 0; if(HasPerTetraFlags(m) ) for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti) (*ti).Flags() = 0; } static void VertexClear(MeshType &m, unsigned int FlagMask = 0xffffffff) { RequirePerVertexFlags(m); int andMask = ~FlagMask; for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi) if(!(*vi).IsD()) (*vi).Flags() &= andMask ; } static void EdgeClear(MeshType &m, unsigned int FlagMask = 0xffffffff) { RequirePerEdgeFlags(m); int andMask = ~FlagMask; for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei) if(!(*ei).IsD()) (*ei).Flags() &= andMask ; } static void FaceClear(MeshType &m, unsigned int FlagMask = 0xffffffff) { RequirePerFaceFlags(m); int andMask = ~FlagMask; for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi) if(!(*fi).IsD()) (*fi).Flags() &= andMask ; } static void TetraClear(MeshType &m, unsigned int FlagMask = 0xffffffff) { RequirePerTetraFlags(m); int andMask = ~FlagMask; for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti) if(!(*ti).IsD()) (*ti).Flags() &= andMask ; } static void VertexSet(MeshType &m, unsigned int FlagMask) { RequirePerVertexFlags(m); for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi) if(!(*vi).IsD()) (*vi).Flags() |= FlagMask ; } static void EdgeSet(MeshType &m, unsigned int FlagMask) { RequirePerEdgeFlags(m); for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei) if(!(*ei).IsD()) (*ei).Flags() |= FlagMask ; } static void FaceSet(MeshType &m, unsigned int FlagMask) { RequirePerFaceFlags(m); for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi) if(!(*fi).IsD()) (*fi).Flags() |= FlagMask ; } static void TetraSet(MeshType &m, unsigned int FlagMask) { RequirePerTetraFlags(m); for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti) if(!(*ti).IsD()) (*ti).Flags() |= FlagMask ; } static void VertexClearV(MeshType &m) { VertexClear(m,VertexType::VISITED);} static void VertexClearS(MeshType &m) { VertexClear(m,VertexType::SELECTED);} static void VertexClearB(MeshType &m) { VertexClear(m,VertexType::BORDER);} static void EdgeClearV(MeshType &m) { EdgeClear(m,EdgeType::VISITED);} static void FaceClearV(MeshType &m) { FaceClear(m,FaceType::VISITED);} static void FaceClearB(MeshType &m) { FaceClear(m,FaceType::BORDER012);} static void FaceClearS(MeshType &m) {FaceClear(m,FaceType::SELECTED);} static void FaceClearF(MeshType &m) { FaceClear(m,FaceType::FAUX012);} static void FaceClearFaceEdgeS(MeshType &m) { FaceClear(m,FaceType::FACEEDGESEL012 ); } static void EdgeSetV(MeshType &m) { EdgeSet(m,EdgeType::VISITED);} static void VertexSetV(MeshType &m) { VertexSet(m,VertexType::VISITED);} static void VertexSetS(MeshType &m) { VertexSet(m,VertexType::SELECTED);} static void VertexSetB(MeshType &m) { VertexSet(m,VertexType::BORDER);} static void FaceSetV(MeshType &m) { FaceSet(m,FaceType::VISITED);} static void FaceSetB(MeshType &m) { FaceSet(m,FaceType::BORDER);} static void FaceSetF(MeshType &m) { FaceSet(m,FaceType::FAUX012);} static void TetraClearV(MeshType &m) { TetraClear(m, TetraType::VISITED); } static void TetraClearS(MeshType &m) { TetraClear(m, TetraType::SELECTED); } static void TetraClearB(MeshType &m) { TetraClear(m, TetraType::BORDER0123); } static void TetraSetV(MeshType &m) { TetraSet(m, TetraType::VISITED); } static void TetraSetS(MeshType &m) { TetraSet(m, TetraType::SELECTED); } static void TetraSetB(MeshType &m) { TetraSet(m, TetraType::BORDER0123); } /// \brief Compute the border flags for the faces using the Face-Face Topology. /** \warning Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace ) */ static void FaceBorderFromFF(MeshType &m) { RequirePerFaceFlags(m); RequireFFAdjacency(m); for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD()) for(int j=0;jVN();++j) { if(face::IsBorder(*fi,j)) (*fi).SetB(j); else (*fi).ClearB(j); } } /// \brief Compute the border flags for the tetras using the Tetra-Tetra Topology. /** \warning Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace ) */ static void TetraBorderFromTT(MeshType &m) { RequirePerTetraFlags(m); RequireTTAdjacency(m); for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti) if(!(*ti).IsD()) for(int j = 0; j < 4; ++j) { if (IsTTBorder(*ti,j)) (*ti).SetB(j); else (*ti).ClearB(j); } } static void VertexBorderFromTT(MeshType &m) { RequirePerVertexFlags(m); RequireTTAdjacency(m); VertexClearB(m); for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti) if(!(*ti).IsD()) for(int j = 0; j < 4; ++j) { if (IsTTBorder(*ti,j)) { for (int i = 0; i < 3; ++i) ti->V(Tetra::VofF(j, i))->SetB(); } } } static void FaceBorderFromVF(MeshType &m) { RequirePerFaceFlags(m); RequireVFAdjacency(m); FaceClearB(m); int visitedBit=VertexType::NewBitFlag(); // Calcolo dei bordi // per ogni vertice vi si cercano i vertici adiacenti che sono toccati da una faccia sola // (o meglio da un numero dispari di facce) const int BORDERFLAG[3]={FaceType::BORDER0, FaceType::BORDER1, FaceType::BORDER2}; for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) { for(face::VFIterator vfi(&*vi) ; !vfi.End(); ++vfi ) { vfi.f->V1(vfi.z)->ClearUserBit(visitedBit); vfi.f->V2(vfi.z)->ClearUserBit(visitedBit); } for(face::VFIterator vfi(&*vi) ; !vfi.End(); ++vfi ) { if(vfi.f->V1(vfi.z)->IsUserBit(visitedBit)) vfi.f->V1(vfi.z)->ClearUserBit(visitedBit); else vfi.f->V1(vfi.z)->SetUserBit(visitedBit); if(vfi.f->V2(vfi.z)->IsUserBit(visitedBit)) vfi.f->V2(vfi.z)->ClearUserBit(visitedBit); else vfi.f->V2(vfi.z)->SetUserBit(visitedBit); } for(face::VFIterator vfi(&*vi) ; !vfi.End(); ++vfi ) { if(vfi.f->V(vfi.z)< vfi.f->V1(vfi.z) && vfi.f->V1(vfi.z)->IsUserBit(visitedBit)) vfi.f->Flags() |= BORDERFLAG[vfi.z]; if(vfi.f->V(vfi.z)< vfi.f->V2(vfi.z) && vfi.f->V2(vfi.z)->IsUserBit(visitedBit)) vfi.f->Flags() |= BORDERFLAG[(vfi.z+2)%3]; } } VertexType::DeleteBitFlag(visitedBit); } class EdgeSorter { public: VertexPointer v[2]; // Puntatore ai due vertici (Ordinati) FacePointer f; // Puntatore alla faccia generatrice int z; // Indice dell'edge nella faccia EdgeSorter() {} // Nothing to do void Set( const FacePointer pf, const int nz ) { assert(pf!=0); assert(nz>=0); assert(nz<3); v[0] = pf->V(nz); v[1] = pf->V((nz+1)%3); assert(v[0] != v[1]); if( v[0] > v[1] ) std::swap(v[0],v[1]); f = pf; z = nz; } inline bool operator < ( const EdgeSorter & pe ) const { if( v[0]pe.v[0] ) return false; else return v[1] < pe.v[1]; } inline bool operator == ( const EdgeSorter & pe ) const { return v[0]==pe.v[0] && v[1]==pe.v[1]; } inline bool operator != ( const EdgeSorter & pe ) const { return v[0]!=pe.v[0] || v[1]!=pe.v[1]; } }; // versione minimale che non calcola i complex flag. static void VertexBorderFromNone(MeshType &m) { RequirePerVertexFlags(m); std::vector e; typename UpdateMeshType::FaceIterator pf; typename std::vector::iterator p; if( m.fn == 0 ) return; e.resize(m.fn*3); // Alloco il vettore ausiliario p = e.begin(); for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce if( ! (*pf).IsD() ) for(int j=0;j<3;++j) { (*p).Set(&(*pf),j); (*pf).ClearB(j); ++p; } assert(p==e.end()); sort(e.begin(), e.end()); // Lo ordino per vertici typename std::vector::iterator pe,ps; for(ps = e.begin(), pe = e.begin(); pe < e.end(); ++pe) // Scansione vettore ausiliario { if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali { if(pe-ps==1) { ps->v[0]->SetB(); ps->v[1]->SetB(); }/* else if(pe-ps!=2) { // not twomanyfold! for(;ps!=pe;++ps) { ps->v[0]->SetB(); // Si settano border anche i complex. ps->v[1]->SetB(); } }*/ ps = pe; } } } /// Computes per-face border flags without requiring any kind of topology /// It has a O(fn log fn) complexity. static void FaceBorderFromNone(MeshType &m) { RequirePerFaceFlags(m); std::vector e; typename UpdateMeshType::FaceIterator pf; typename std::vector::iterator p; for(VertexIterator v=m.vert.begin();v!=m.vert.end();++v) (*v).ClearB(); if( m.fn == 0 ) return; FaceIterator fi; int n_edges = 0; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN(); e.resize(n_edges); p = e.begin(); for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce if( ! (*pf).IsD() ) for(int j=0;j<(*pf).VN();++j) { (*p).Set(&(*pf),j); (*pf).ClearB(j); ++p; } assert(p==e.end()); sort(e.begin(), e.end()); // Lo ordino per vertici typename std::vector::iterator pe,ps; ps = e.begin();pe=e.begin(); do { if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali { if(pe-ps==1) { ps->f->SetB(ps->z); } /*else if(pe-ps!=2) { // Caso complex!! for(;ps!=pe;++ps) ps->f->SetB(ps->z); // Si settano border anche i complex. }*/ ps = pe; } if(pe==e.end()) break; ++pe; } while(true); // TRACE("found %i border (%i complex) on %i edges\n",nborder,ncomplex,ne); } /// Compute the PerVertex Border flag deriving it from the face-face adjacency static void VertexBorderFromFaceAdj(MeshType &m) { RequirePerFaceFlags(m); RequirePerVertexFlags(m); RequireFFAdjacency(m); // MeshAssert::FFAdjacencyIsInitialized(m); VertexClearB(m); for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { for(int z=0;z<(*fi).VN();++z) if( face::IsBorder(*fi,z)) { (*fi).V0(z)->SetB(); (*fi).V1(z)->SetB(); } } } /// Compute the PerVertex Border flag deriving it from the border flag of faces static void VertexBorderFromFaceBorder(MeshType &m) { RequirePerFaceFlags(m); RequirePerVertexFlags(m); VertexClearB(m); for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { for(int z=0;z<(*fi).VN();++z) if( (*fi).IsB(z) ) { (*fi).V(z)->SetB(); (*fi).V((*fi).Next(z))->SetB(); } } } /// Compute the PerVertex Border flag deriving it from the Edge-Edge adjacency (made for edgemeshes) static void VertexBorderFromEdgeAdj(MeshType &m) { RequirePerVertexFlags(m); RequireEEAdjacency(m); VertexClearB(m); for (EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei) if (!ei->IsD()) { for (int z=0; z<2; ++z) if (edge::IsEdgeBorder(*ei, z)) { ei->V(z)->SetB(); } } } /// \brief Marks feature edges according to two signed dihedral angles. /// Actually it uses the face_edge selection bit on faces, /// we select the edges where the signed dihedral angle between the normal of two incident faces , /// is outside the two given thresholds. /// In this way all the edges that are almost planar are marked as non selected (e.g. edges to be ignored) /// Note that it uses the signed dihedral angle convention (negative for concave edges and positive for convex ones); /// /// Optionally it can also mark as feature edges also the boundary edges. /// static void FaceEdgeSelSignedCrease(MeshType &m, float AngleRadNeg, float AngleRadPos, bool MarkBorderFlag = false ) { RequirePerFaceFlags(m); RequireFFAdjacency(m); //initially Nothing is faux (e.g all crease) FaceClearFaceEdgeS(m); // Then mark faux only if the signed angle is the range. for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { for(int z=0;z<(*fi).VN();++z) { if(!face::IsBorder(*fi,z) ) { ScalarType angle = DihedralAngleRad(*fi,z); if(angleAngleRadPos) (*fi).SetFaceEdgeS(z); } else { if(MarkBorderFlag) (*fi).SetFaceEdgeS(z); } } } } /// \brief Selects feature edges according to Face adjacency. /// static void FaceEdgeSelBorder(MeshType &m) { RequirePerFaceFlags(m); RequireFFAdjacency(m); //initially Nothing is selected FaceClearFaceEdgeS(m); for (FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi) if (!fi->IsD()) { for (int z=0; z<(*fi).VN(); ++z) { if (face::IsBorder(*fi,z)) fi->SetFaceEdgeS(z); } } } /// \brief Marks feature edges according to a given angle /// Actually it uses the face_edge selection bit on faces, /// we select the edges where the dihedral angle between the normal of two incident faces is larger than , /// the given thresholds. /// In this way all the near planar edges are marked remains not selected (e.g. edges to be ignored) static void FaceEdgeSelCrease(MeshType &m,float AngleRad) { FaceEdgeSelSignedCrease(m,-AngleRad,AngleRad); } }; // end class } // End namespace tri } // End namespace vcg #endif