/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCGLIB_MATRIX44 #define __VCGLIB_MATRIX44 #include #include #include #include #include #include #include #include namespace vcg { /* Annotations: Opengl stores matrix in column-major order. That is, the matrix is stored as: a0 a4 a8 a12 a1 a5 a9 a13 a2 a6 a10 a14 a3 a7 a11 a15 Usually in opengl (see opengl specs) vectors are 'column' vectors so usually matrix are PRE-multiplied for a vector. So the command glTranslate generate a matrix that is ready to be premultipled for a vector: 1 0 0 tx 0 1 0 ty 0 0 1 tz 0 0 0 1 Matrix44 stores matrix in row-major order i.e. a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 So for the use of that matrix in opengl with their supposed meaning you have to transpose them before feeding to glMultMatrix. This mechanism is hidden by the templated function defined in wrap/gl/math.h; If your machine has the ARB_transpose_matrix extension it will use the appropriate; The various gl-like command SetRotate, SetTranslate assume that you are making matrix for 'column' vectors. */ /** This class represent a 4x4 matrix. T is the kind of element in the matrix. */ template class Matrix44 { protected: T _a[16]; public: typedef T ScalarType; ///@{ /** $name Constructors * No automatic casting and default constructor is empty */ Matrix44() {} ~Matrix44() {} Matrix44(const Matrix44 &m); Matrix44(const T v[]); T &ElementAt(const int row, const int col); T ElementAt(const int row, const int col) const; //T &operator[](const int i); //const T &operator[](const int i) const; T *V(); const T *V() const ; T *operator[](const int i); const T *operator[](const int i) const; // return a copy of the i-th column Point4 GetColumn4(const int& i)const{ assert(i>=0 && i<4); return Point4(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i),ElementAt(3,i)); //return Point4(_a[i],_a[i+4],_a[i+8],_a[i+12]); } Point3 GetColumn3(const int& i)const{ assert(i>=0 && i<4); return Point3(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i)); } Point4 GetRow4(const int& i)const{ assert(i>=0 && i<4); return Point4(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2),ElementAt(i,3)); // return *((Point4*)(&_a[i<<2])); alternativa forse + efficiente } Point3 GetRow3(const int& i)const{ assert(i>=0 && i<4); return Point3(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2)); // return *((Point4*)(&_a[i<<2])); alternativa forse + efficiente } Matrix44 operator+(const Matrix44 &m) const; Matrix44 operator-(const Matrix44 &m) const; Matrix44 operator*(const Matrix44 &m) const; Point4 operator*(const Point4 &v) const; bool operator==(const Matrix44 &m) const; bool operator!= (const Matrix44 &m) const; Matrix44 operator-() const; Matrix44 operator*(const T k) const; void operator+=(const Matrix44 &m); void operator-=(const Matrix44 &m); void operator*=( const Matrix44 & m ); void operator*=( const T k ); template void ToMatrix(Matrix44Type & m) const {for(int i = 0; i < 16; i++) m.V()[i]=V()[i];} void ToEulerAngles(T &alpha, T &beta, T &gamma); template void FromMatrix(const Matrix44Type & m){for(int i = 0; i < 16; i++) V()[i]=m.V()[i];} template void ToEigenMatrix(EigenMatrix44Type & m) const { for(int i = 0; i < 4; i++) for(int j = 0; j < 4; j++) m(i,j)=(*this)[i][j]; } template void FromEigenMatrix(const EigenMatrix44Type & m){ for(int i = 0; i < 4; i++) for(int j = 0; j < 4; j++) ElementAt(i,j)=m(i,j); } void FromEulerAngles(T alpha, T beta, T gamma); void SetZero(); void SetIdentity(); void SetDiagonal(const T k); Matrix44 &SetScale(const T sx, const T sy, const T sz); Matrix44 &SetScale(const Point3 &t); Matrix44& SetColumn(const unsigned int ii,const Point4 &t); Matrix44& SetColumn(const unsigned int ii,const Point3 &t); Matrix44 &SetTranslate(const Point3 &t); Matrix44 &SetTranslate(const T sx, const T sy, const T sz); Matrix44 &SetShearXY(const T sz); Matrix44 &SetShearXZ(const T sy); Matrix44 &SetShearYZ(const T sx); ///use radiants for angle. Matrix44 &SetRotateDeg(T AngleDeg, const Point3 & axis); Matrix44 &SetRotateRad(T AngleRad, const Point3 & axis); T Determinant() const; template void Import(const Matrix44 &m) { for(int i = 0; i < 16; i++) _a[i] = (T)(m.V()[i]); } template static inline Matrix44 Construct( const Matrix44 & b ) { Matrix44 tmp; tmp.FromMatrix(b); return tmp; } static inline const Matrix44 &Identity( ) { static Matrix44 tmp; tmp.SetIdentity(); return tmp; } // for the transistion to eigen Matrix44 transpose() const { Matrix44 res = *this; Transpose(res); return res; } void transposeInPlace() { Transpose(*this); } void print() { unsigned int i, j, p; for (i=0, p=0; i<4; i++, p+=4) { std::cout << "[\t"; for (j=0; j<4; j++) std::cout << _a[p+j] << "\t"; std::cout << "]\n"; } std::cout << "\n"; } }; /** Class for solving A * x = b. */ template class LinearSolve: public Matrix44 { public: LinearSolve(const Matrix44 &m); Point4 Solve(const Point4 &b); // solve A � x = b ///If you need to solve some equation you can use this function instead of Matrix44 one for speed. T Determinant() const; protected: ///Holds row permutation. int index[4]; //hold permutation ///Hold sign of row permutation (used for determinant sign) T d; bool Decompose(); }; /*** Postmultiply */ //template Point3 operator*(const Point3 &p, const Matrix44 &m); ///Premultiply template Point3 operator*(const Matrix44 &m, const Point3 &p); template Matrix44 &Transpose(Matrix44 &m); //return NULL matrix if not invertible template Matrix44 Inverse(const Matrix44 &m); typedef Matrix44 Matrix44s; typedef Matrix44 Matrix44i; typedef Matrix44 Matrix44f; typedef Matrix44 Matrix44d; template Matrix44::Matrix44(const Matrix44 &m) { memcpy((T *)_a, (const T *)m._a, 16 * sizeof(T)); } template Matrix44::Matrix44(const T v[]) { memcpy((T *)_a, v, 16 * sizeof(T)); } template T &Matrix44::ElementAt(const int row, const int col) { assert(row >= 0 && row < 4); assert(col >= 0 && col < 4); return _a[(row<<2) + col]; } template T Matrix44::ElementAt(const int row, const int col) const { assert(row >= 0 && row < 4); assert(col >= 0 && col < 4); return _a[(row<<2) + col]; } //template T &Matrix44::operator[](const int i) { // assert(i >= 0 && i < 16); // return ((T *)_a)[i]; //} // //template const T &Matrix44::operator[](const int i) const { // assert(i >= 0 && i < 16); // return ((T *)_a)[i]; //} template T *Matrix44::operator[](const int i) { assert(i >= 0 && i < 4); return _a+i*4; } template const T *Matrix44::operator[](const int i) const { assert(i >= 0 && i < 4); return _a+i*4; } template T *Matrix44::V() { return _a;} template const T *Matrix44::V() const { return _a;} template Matrix44 Matrix44::operator+(const Matrix44 &m) const { Matrix44 ret; for(int i = 0; i < 16; i++) ret.V()[i] = V()[i] + m.V()[i]; return ret; } template Matrix44 Matrix44::operator-(const Matrix44 &m) const { Matrix44 ret; for(int i = 0; i < 16; i++) ret.V()[i] = V()[i] - m.V()[i]; return ret; } template Matrix44 Matrix44::operator*(const Matrix44 &m) const { Matrix44 ret; for(int i = 0; i < 4; i++) for(int j = 0; j < 4; j++) { T t = 0.0; for(int k = 0; k < 4; k++) t += ElementAt(i, k) * m.ElementAt(k, j); ret.ElementAt(i, j) = t; } return ret; } template Point4 Matrix44::operator*(const Point4 &v) const { Point4 ret; for(int i = 0; i < 4; i++){ T t = 0.0; for(int k = 0; k < 4; k++) t += ElementAt(i,k) * v[k]; ret[i] = t; } return ret; } template bool Matrix44::operator==(const Matrix44 &m) const { for(int i = 0; i < 4; ++i) for(int j = 0; j < 4; ++j) if(ElementAt(i,j) != m.ElementAt(i,j)) return false; return true; } template bool Matrix44::operator!=(const Matrix44 &m) const { for(int i = 0; i < 4; ++i) for(int j = 0; j < 4; ++j) if(ElementAt(i,j) != m.ElementAt(i,j)) return true; return false; } template Matrix44 Matrix44::operator-() const { Matrix44 res; for(int i = 0; i < 16; i++) res.V()[i] = -V()[i]; return res; } template Matrix44 Matrix44::operator*(const T k) const { Matrix44 res; for(int i = 0; i < 16; i++) res.V()[i] =V()[i] * k; return res; } template void Matrix44::operator+=(const Matrix44 &m) { for(int i = 0; i < 16; i++) V()[i] += m.V()[i]; } template void Matrix44::operator-=(const Matrix44 &m) { for(int i = 0; i < 16; i++) V()[i] -= m.V()[i]; } template void Matrix44::operator*=( const Matrix44 & m ) { *this = *this *m; } template < class PointType , class T > void operator*=( std::vector &vert, const Matrix44 & m ) { typename std::vector::iterator ii; for(ii=vert.begin();ii!=vert.end();++ii) (*ii).P()=m * (*ii).P(); } template void Matrix44::operator*=( const T k ) { for(int i = 0; i < 16; i++) _a[i] *= k; } template void Matrix44::ToEulerAngles(T &alpha, T &beta, T &gamma) { alpha = atan2(ElementAt(1,2), ElementAt(2,2)); beta = asin(-ElementAt(0,2)); gamma = atan2(ElementAt(0,1), ElementAt(0,0)); } template void Matrix44::FromEulerAngles(T alpha, T beta, T gamma) { this->SetZero(); T cosalpha = cos(alpha); T cosbeta = cos(beta); T cosgamma = cos(gamma); T sinalpha = sin(alpha); T sinbeta = sin(beta); T singamma = sin(gamma); ElementAt(0,0) = cosbeta * cosgamma; ElementAt(1,0) = -cosalpha * singamma + sinalpha * sinbeta * cosgamma; ElementAt(2,0) = sinalpha * singamma + cosalpha * sinbeta * cosgamma; ElementAt(0,1) = cosbeta * singamma; ElementAt(1,1) = cosalpha * cosgamma + sinalpha * sinbeta * singamma; ElementAt(2,1) = -sinalpha * cosgamma + cosalpha * sinbeta * singamma; ElementAt(0,2) = -sinbeta; ElementAt(1,2) = sinalpha * cosbeta; ElementAt(2,2) = cosalpha * cosbeta; ElementAt(3,3) = 1; } template void Matrix44::SetZero() { memset((T *)_a, 0, 16 * sizeof(T)); } template void Matrix44::SetIdentity() { SetDiagonal(1); } template void Matrix44::SetDiagonal(const T k) { SetZero(); ElementAt(0, 0) = k; ElementAt(1, 1) = k; ElementAt(2, 2) = k; ElementAt(3, 3) = 1; } template Matrix44 &Matrix44::SetScale(const Point3 &t) { SetScale(t[0], t[1], t[2]); return *this; } template Matrix44 &Matrix44::SetScale(const T sx, const T sy, const T sz) { SetZero(); ElementAt(0, 0) = sx; ElementAt(1, 1) = sy; ElementAt(2, 2) = sz; ElementAt(3, 3) = 1; return *this; } template Matrix44 &Matrix44::SetTranslate(const Point3 &t) { SetTranslate(t[0], t[1], t[2]); return *this; } template Matrix44 &Matrix44::SetTranslate(const T tx, const T ty, const T tz) { SetIdentity(); ElementAt(0, 3) = tx; ElementAt(1, 3) = ty; ElementAt(2, 3) = tz; return *this; } template Matrix44 &Matrix44::SetColumn(const unsigned int ii,const Point3 &t) { assert( ii < 4 ); ElementAt(0, ii) = t.X(); ElementAt(1, ii) = t.Y(); ElementAt(2, ii) = t.Z(); return *this; } template Matrix44 &Matrix44::SetColumn(const unsigned int ii,const Point4 &t) { assert( ii < 4 ); ElementAt(0, ii) = t[0]; ElementAt(1, ii) = t[1]; ElementAt(2, ii) = t[2]; ElementAt(3, ii) = t[3]; return *this; } template Matrix44 &Matrix44::SetRotateDeg(T AngleDeg, const Point3 & axis) { return SetRotateRad(math::ToRad(AngleDeg),axis); } template Matrix44 &Matrix44::SetRotateRad(T AngleRad, const Point3 & axis) { //angle = angle*(T)3.14159265358979323846/180; e' in radianti! T c = math::Cos(AngleRad); T s = math::Sin(AngleRad); T q = 1-c; Point3 t = axis; t.Normalize(); ElementAt(0,0) = t[0]*t[0]*q + c; ElementAt(0,1) = t[0]*t[1]*q - t[2]*s; ElementAt(0,2) = t[0]*t[2]*q + t[1]*s; ElementAt(0,3) = 0; ElementAt(1,0) = t[1]*t[0]*q + t[2]*s; ElementAt(1,1) = t[1]*t[1]*q + c; ElementAt(1,2) = t[1]*t[2]*q - t[0]*s; ElementAt(1,3) = 0; ElementAt(2,0) = t[2]*t[0]*q -t[1]*s; ElementAt(2,1) = t[2]*t[1]*q +t[0]*s; ElementAt(2,2) = t[2]*t[2]*q +c; ElementAt(2,3) = 0; ElementAt(3,0) = 0; ElementAt(3,1) = 0; ElementAt(3,2) = 0; ElementAt(3,3) = 1; return *this; } /* Given a non singular, non projective matrix (e.g. with the last row equal to [0,0,0,1] ) This procedure decompose it in a sequence of - Scale,Shear,Rotation e Translation - ScaleV and Tranv are obiviously scaling and translation. - ShearV contains three scalars with, respectively, ShearXY, ShearXZ and ShearYZ - RotateV contains the rotations (in degree!) around the x,y,z axis The input matrix is modified leaving inside it a simple roto translation. To obtain the original matrix the above transformation have to be applied in the strict following way: OriginalMatrix = Trn * Rtx*Rty*Rtz * ShearYZ*ShearXZ*ShearXY * Scl Example Code: double srv() { return (double(rand()%40)-20)/2.0; } // small random value srand(time(0)); Point3d ScV(10+srv(),10+srv(),10+srv()),ScVOut(-1,-1,-1); Point3d ShV(srv(),srv(),srv()),ShVOut(-1,-1,-1); Point3d RtV(10+srv(),srv(),srv()),RtVOut(-1,-1,-1); Point3d TrV(srv(),srv(),srv()),TrVOut(-1,-1,-1); Matrix44d Scl; Scl.SetScale(ScV); Matrix44d Sxy; Sxy.SetShearXY(ShV[0]); Matrix44d Sxz; Sxz.SetShearXZ(ShV[1]); Matrix44d Syz; Syz.SetShearYZ(ShV[2]); Matrix44d Rtx; Rtx.SetRotate(math::ToRad(RtV[0]),Point3d(1,0,0)); Matrix44d Rty; Rty.SetRotate(math::ToRad(RtV[1]),Point3d(0,1,0)); Matrix44d Rtz; Rtz.SetRotate(math::ToRad(RtV[2]),Point3d(0,0,1)); Matrix44d Trn; Trn.SetTranslate(TrV); Matrix44d StartM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy *Scl; Matrix44d ResultM=StartM; Decompose(ResultM,ScVOut,ShVOut,RtVOut,TrVOut); Scl.SetScale(ScVOut); Sxy.SetShearXY(ShVOut[0]); Sxz.SetShearXZ(ShVOut[1]); Syz.SetShearYZ(ShVOut[2]); Rtx.SetRotate(math::ToRad(RtVOut[0]),Point3d(1,0,0)); Rty.SetRotate(math::ToRad(RtVOut[1]),Point3d(0,1,0)); Rtz.SetRotate(math::ToRad(RtVOut[2]),Point3d(0,0,1)); Trn.SetTranslate(TrVOut); // Now Rebuild is equal to StartM Matrix44d RebuildM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy * Scl ; */ template bool Decompose(Matrix44 &M, Point3 &ScaleV, Point3 &ShearV, Point3 &RotV,Point3 &TranV) { if(!(M[3][0]==0 && M[3][1]==0 && M[3][2]==0 && M[3][3]==1) ) // the matrix is projective return false; if(math::Abs(M.Determinant())<1e-10) return false; // matrix should be at least invertible... // First Step recover the traslation TranV=M.GetColumn3(3); // Second Step Recover Scale and Shearing interleaved ScaleV[0]=Norm(M.GetColumn3(0)); Point3 R[3]; R[0]=M.GetColumn3(0); R[0].Normalize(); ShearV[0]=R[0]*M.GetColumn3(1); // xy shearing R[1]= M.GetColumn3(1)-R[0]*ShearV[0]; assert(math::Abs(R[1]*R[0])<1e-10); ScaleV[1]=Norm(R[1]); // y scaling R[1]=R[1]/ScaleV[1]; ShearV[0]=ShearV[0]/ScaleV[1]; ShearV[1]=R[0]*M.GetColumn3(2); // xz shearing R[2]= M.GetColumn3(2)-R[0]*ShearV[1]; assert(math::Abs(R[2]*R[0])<1e-10); R[2] = R[2]-R[1]*(R[2]*R[1]); assert(math::Abs(R[2]*R[1])<1e-10); assert(math::Abs(R[2]*R[0])<1e-10); ScaleV[2]=Norm(R[2]); ShearV[1]=ShearV[1]/ScaleV[2]; R[2]=R[2]/ScaleV[2]; assert(math::Abs(R[2]*R[1])<1e-10); assert(math::Abs(R[2]*R[0])<1e-10); ShearV[2]=R[1]*M.GetColumn3(2); // yz shearing ShearV[2]=ShearV[2]/ScaleV[2]; int i,j; for(i=0;i<3;++i) for(j=0;j<3;++j) M[i][j]=R[j][i]; // Third and last step: Recover the rotation //now the matrix should be a pure rotation matrix so its determinant is +-1 double det=M.Determinant(); if(math::Abs(det)<1e-10) return false; // matrix should be at least invertible... assert(math::Abs(math::Abs(det)-1.0)<1e-10); // it should be +-1... if(det<0) { ScaleV *= -1; M *= -1; } double alpha,beta,gamma; // rotations around the x,y and z axis beta=asin( M[0][2]); double cosbeta=cos(beta); if(math::Abs(cosbeta) > 1e-5) { alpha=asin(-M[1][2]/cosbeta); if((M[2][2]/cosbeta) < 0 ) alpha=M_PI-alpha; gamma=asin(-M[0][1]/cosbeta); if((M[0][0]/cosbeta)<0) gamma = M_PI-gamma; } else { alpha=asin(-M[1][0]); if(M[1][1]<0) alpha=M_PI-alpha; gamma=0; } RotV[0]=math::ToDeg(alpha); RotV[1]=math::ToDeg(beta); RotV[2]=math::ToDeg(gamma); return true; } template T Matrix44::Determinant() const { Eigen::Matrix4d mm; this->ToEigenMatrix(mm); return mm.determinant(); } template Point3 operator*(const Matrix44 &m, const Point3 &p) { T w; Point3 s; s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(0, 1)*p[1] + m.ElementAt(0, 2)*p[2] + m.ElementAt(0, 3); s[1] = m.ElementAt(1, 0)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(1, 2)*p[2] + m.ElementAt(1, 3); s[2] = m.ElementAt(2, 0)*p[0] + m.ElementAt(2, 1)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(2, 3); w = m.ElementAt(3, 0)*p[0] + m.ElementAt(3, 1)*p[1] + m.ElementAt(3, 2)*p[2] + m.ElementAt(3, 3); if(w!= 0) s /= w; return s; } template Matrix44 &Transpose(Matrix44 &m) { for(int i = 1; i < 4; i++) for(int j = 0; j < i; j++) { std::swap(m.ElementAt(i, j), m.ElementAt(j, i)); } return m; } template Matrix44 Inverse(const Matrix44 &m) { Eigen::Matrix4d mm,mmi; m.ToEigenMatrix(mm); mmi=mm.inverse(); Matrix44 res; res.FromEigenMatrix(mmi); return res; } } //namespace #endif