/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.5 2004/05/05 08:21:55 cignoni syntax errors in inersection plane line. Revision 1.4 2004/05/04 02:37:58 ganovelli Triangle3 replaced by TRIANGLE Segment replaced by EDGETYPE Revision 1.3 2004/04/29 10:48:44 ganovelli error in plane segment corrected Revision 1.2 2004/04/26 12:34:50 ganovelli plane line plane segment triangle triangle added Revision 1.1 2004/04/21 14:22:27 cignoni Initial Commit ****************************************************************************/ #ifndef __VCGLIB_INTERSECTION_3 #define __VCGLIB_INTERSECTION_3 #include #include #include #include #include #include #include /** \addtogroup space */ /*@{*/ /** Function computing the intersection between couple of geometric primitives in 3 dimension */ namespace vcg { /// interseciton between sphere and line template inline bool Intersection( const Sphere3 & sp, const Line3 & li, Point3 & p0,Point3 & p1 ){ // Per prima cosa si sposta il sistema di riferimento // fino a portare il centro della sfera nell'origine Point3 neworig=li.Origin()-sp.Center(); // poi si risolve il sistema di secondo grado (con maple...) T t1 = li.Direction().x()*li.Direction().x(); T t2 = li.Direction().y()*li.Direction().y(); T t3 = li.Direction().z()*li.Direction().z(); T t6 = neworig.y()*li.Direction().y(); T t7 = neworig.x()*li.Direction().x(); T t8 = neworig.z()*li.Direction().z(); T t15 = sp.Radius()*sp.Radius(); T t17 = neworig.z()*neworig.z(); T t19 = neworig.y()*neworig.y(); T t21 = neworig.x()*neworig.x(); T t28 = 2.0*t7*t6+2.0*t6*t8+2.0*t7*t8+t1*t15-t1*t17-t1*t19-t2*t21+t2*t15-t2*t17-t3*t21+t3*t15-t3*t19; if(t28<0) return false; T t29 = sqrt(t28); T val0 = 1/(t1+t2+t3)*(-t6-t7-t8+t29); T val1 = 1/(t1+t2+t3)*(-t6-t7-t8-t29); p0=li.P(val0); p1=li.P(val1); return true; } /// intersection between line and plane template inline bool Intersection( const Plane3 & pl, const Line3 & li, Point3 & po){ const T epsilon = T(1e-8); T k = pl.Direction() * li.Direction(); // Compute 'k' factor if( (k > -epsilon) && (k < epsilon)) return false; T r = (pl.Offset() - pl.Direction()*li.Origin())/k; // Compute ray distance po = li.Origin() + li.Direction()*r; return true; } /// intersection between segment and plane template inline bool Intersection( const Plane3 & pl, const SEGMENTTYPE & sg, Point3 & po){ typedef typename SEGMENTTYPE::ScalarType T; const T epsilon = T(1e-8); T k = pl.Direction() * (sg.P1()-sg.P0()); if( (k > -epsilon) && (k < epsilon)) return false; T r = (pl.Offset() - pl.Direction()*sg.P0())/k; // Compute ray distance if( (r<0) || (r > 1.0)) return false; po = sg.P0()*(1-r)+sg.P1() * r; return true; } /// intersection between plane and triangle // not optimal: uses plane-segment intersection (and the fact the two or none edges can be intersected) template inline bool Intersection( const Plane3 & pl, const TRIANGLETYPE & tr, Segment3 & sg){ typedef typename TRIANGLETYPE::ScalarType T; if(Intersection(pl,Segment3(tr.P(0),tr.P(1)),sg.P0())){ if(Intersection(pl,Segment3(tr.P(0),tr.P(2)),sg.P1())) return true; else { Intersection(pl,Segment3(tr.P(1),tr.P(2)),sg.P1()); return true; } }else { if(Intersection(pl,Segment3(tr.P(1),tr.P(2)),sg.P0())) { Intersection(pl,Segment3(tr.P(0),tr.P(2)),sg.P1()); return true; } } return false; } /// intersection between two triangles template inline bool Intersection(const TRIANGLETYPE & t0,const TRIANGLETYPE & t1){ return NoDivTriTriIsect(t0.P0(0),t0.P0(1),t0.P0(2), t1.P0(0),t1.P0(1),t1.P0(2)); } template inline bool Intersection(Point3 V0,Point3 V1,Point3 V2, Point3 U0,Point3 U1,Point3 U2){ return NoDivTriTriIsect(V0,V1,V2,U0,U1,U2); } template inline bool Intersection(Point3 V0,Point3 V1,Point3 V2, Point3 U0,Point3 U1,Point3 U2,int *coplanar, Point3 &isectpt1,Point3 &isectpt2){ return tri_tri_intersect_with_isectline(V0,V1,V2,U0,U1,U2, coplanar,isectpt1,isectpt2); } template inline bool Intersection(const TRIANGLETYPE & t0,const TRIANGLETYPE & t1,bool &coplanar, SEGMENTTYPE & sg){ Point3 ip0,ip1; return tri_tri_intersect_with_isectline(t0.P0(0),t0.P0(1),t0.P0(2), t1.P0(0),t1.P0(1),t1.P0(2), coplanar,sg.P0(),sg.P1() ); } } // end namespace #endif