/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.6 2008/04/04 10:26:12 cignoni Cleaned up names, now Kg() gives back Gaussian Curvature (k1*k2), while Kh() gives back Mean Curvature 1/2(k1+k2) Revision 1.5 2008/03/25 11:00:56 ganovelli fixed bugs sign of principal direction and mean curvature value Revision 1.4 2008/03/17 11:29:59 ganovelli taubin and desbrun estimates added (-> see vcg/simplex/vertexplus/component.h [component_ocf.h|component_occ.h ] Revision 1.3 2006/02/27 18:02:57 ponchio Area -> doublearea/2 added some typename Revision 1.2 2005/10/25 09:17:41 spinelli correct IsBorder Revision 1.1 2005/02/22 16:40:29 ganovelli created. This version writes the gaussian curvature on the Q() member of the vertex /****************************************************************************/ #ifndef VCGLIB_UPDATE_CURVATURE_ #define VCGLIB_UPDATE_CURVATURE_ #include #include #include #include #include #include #include namespace vcg { namespace tri { /** \addtogroup trimesh */ /*@{*/ /// Management, updating and computation of per-vertex and per-face normals. /// This class is used to compute or update the normals that can be stored in the vertex or face component of a mesh. template class UpdateCurvature { public: typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::VertContainer VertContainer; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef vcg::face::VFIterator VFIteratorType; typedef typename MeshType::CoordType CoordType; typedef typename CoordType::ScalarType ScalarType; private: typedef struct AdjVertex { VertexType * vert; float doubleArea; bool isBorder; }; public: /* Compute principal direction and magniuto of curvature as describe in the paper: @InProceedings{bb33922, author = "G. Taubin", title = "Estimating the Tensor of Curvature of a Surface from a Polyhedral Approximation", booktitle = "International Conference on Computer Vision", year = "1995", pages = "902--907", URL = "http://dx.doi.org/10.1109/ICCV.1995.466840", bibsource = "http://www.visionbib.com/bibliography/describe440.html#TT32253", */ static void PrincipalDirections(MeshType &m) { assert(m.HasVFTopology()); vcg::tri::UpdateNormals::PerVertexNormalized(m); VertexIterator vi; for (vi =m.vert.begin(); vi !=m.vert.end(); ++vi) { if ( ! (*vi).IsD() && (*vi).VFp() != NULL) { VertexType * central_vertex = &(*vi); std::vector weights; std::vector vertices; vcg::face::JumpingPos pos((*vi).VFp(), central_vertex); VertexType* firstV = pos.VFlip(); VertexType* tempV; float totalDoubleAreaSize = 0.0f; if (((firstV->cP()-central_vertex->cP())^(pos.VFlip()->cP()-central_vertex->cP()))*central_vertex->cN()<=0.0f) { pos.Set(central_vertex->VFp(), central_vertex); pos.FlipE(); firstV = pos.VFlip(); } else pos.Set(central_vertex->VFp(), central_vertex); do { pos.NextE(); tempV = pos.VFlip(); AdjVertex v; v.isBorder = pos.IsBorder(); v.vert = tempV; v.doubleArea = ((pos.F()->V(1)->cP() - pos.F()->V(0)->cP()) ^ (pos.F()->V(2)->cP()- pos.F()->V(0)->cP())).Norm();; totalDoubleAreaSize += v.doubleArea; vertices.push_back(v); } while(tempV != firstV); for (int i = 0; i < vertices.size(); ++i) { if (vertices[i].isBorder) { weights.push_back(vertices[i].doubleArea / totalDoubleAreaSize); } else { weights.push_back(0.5f * (vertices[i].doubleArea + vertices[(i-1)%vertices.size()].doubleArea) / totalDoubleAreaSize); } assert(weights.back() < 1.0f); } Matrix33f Tp; for (int i = 0; i < 3; ++i) Tp[i][i] = 1.0f - powf(central_vertex->cN()[i],2); Tp[0][1] = Tp[1][0] = -1.0f * (central_vertex->N()[0] * central_vertex->cN()[1]); Tp[1][2] = Tp[2][1] = -1.0f * (central_vertex->cN()[1] * central_vertex->cN()[2]); Tp[0][2] = Tp[2][0] = -1.0f * (central_vertex->cN()[0] * central_vertex->cN()[2]); Matrix33f tempMatrix; Matrix33f M; M.SetZero(); for (int i = 0; i < vertices.size(); ++i) { Point3f edge = (central_vertex->cP() - vertices[i].vert->cP()); float curvature = (2.0f * (central_vertex->cN() * edge) ) / edge.SquaredNorm(); Point3f T = (Tp*edge).Normalize(); tempMatrix.ExternalProduct(T,T); M += tempMatrix * weights[i] * curvature ; } Point3f W; Point3f e1(1.0f,0.0f,0.0f); if ((e1 - central_vertex->cN()).SquaredNorm() > (e1 + central_vertex->cN()).SquaredNorm()) W = e1 - central_vertex->cN(); else W = e1 + central_vertex->cN(); W.Normalize(); Matrix33f Q; Q.SetIdentity(); tempMatrix.ExternalProduct(W,W); Q -= tempMatrix * 2.0f; Matrix33f Qt(Q); Qt.Transpose(); Matrix33f QtMQ = (Qt * M * Q); Point3f bl = Q.GetColumn(0); Point3f T1 = Q.GetColumn(1); Point3f T2 = Q.GetColumn(2); float s,c; // Gabriel Taubin hint and Valentino Fiorin impementation float qt21 = QtMQ[2][1]; float qt12 = QtMQ[1][2]; float alpha = QtMQ[1][1]-QtMQ[2][2]; float beta = QtMQ[2][1]; float h[2]; float delta = sqrtf(4.0f*powf(alpha, 2) +16.0f*powf(beta, 2)); h[0] = (2.0f*alpha + delta) / (2.0f*beta); h[1] = (2.0f*alpha - delta) / (2.0f*beta); float t[2]; float best_c, best_s; float min_error = std::numeric_limits::infinity(); for (int i=0; i<2; i++) { delta = sqrtf(powf(h[1], 2) + 4.0f); t[0] = (h[i]+delta) / 2.0f; t[1] = (h[i]-delta) / 2.0f; for (int j=0; j<2; j++) { float squared_t = powf(t[j], 2); float denominator = 1.0f + squared_t; s = (2.0f*t[j]) / denominator; c = (1-squared_t) / denominator; float approximation = c*s*alpha + (powf(c, 2) - powf(s, 2))*beta; float angle_similarity = fabs(acosf(c)/asinf(s)); float error = fabs(1.0f-angle_similarity)+fabs(approximation); if (error TDAreaPtr(m.vert); TDAreaPtr.Start(); SimpleTempData TDContr(m.vert); TDContr.Start(); vcg::tri::UpdateNormals::PerVertexNormalized(m); //Compute AreaMix in H (vale anche per K) for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi) if(!(*vi).IsD()) { (TDAreaPtr)[*vi].A = 0.0; (TDContr)[*vi] =typename MeshType::CoordType(0.0,0.0,0.0); (*vi).Kh() = 0.0; (*vi).Kg() = (float)(2.0 * M_PI); } for(fi=m.face.begin();fi!=m.face.end();++fi) if( !(*fi).IsD()) { // angles angle0 = math::Abs(Angle( (*fi).P(1)-(*fi).P(0),(*fi).P(2)-(*fi).P(0) )); angle1 = math::Abs(Angle( (*fi).P(0)-(*fi).P(1),(*fi).P(2)-(*fi).P(1) )); angle2 = M_PI-(angle0+angle1); if((angle0 < M_PI/2) && (angle1 < M_PI/2) && (angle2 < M_PI/2)) // triangolo non ottuso { float e01 = SquaredDistance( (*fi).V(1)->cP() , (*fi).V(0)->cP() ); float e12 = SquaredDistance( (*fi).V(2)->cP() , (*fi).V(1)->cP() ); float e20 = SquaredDistance( (*fi).V(0)->cP() , (*fi).V(2)->cP() ); area0 = ( e20*(1.0/tan(angle1)) + e01*(1.0/tan(angle2)) ) / 8.0; area1 = ( e01*(1.0/tan(angle2)) + e12*(1.0/tan(angle0)) ) / 8.0; area2 = ( e12*(1.0/tan(angle0)) + e20*(1.0/tan(angle1)) ) / 8.0; (TDAreaPtr)[(*fi).V(0)].A += area0; (TDAreaPtr)[(*fi).V(1)].A += area1; (TDAreaPtr)[(*fi).V(2)].A += area2; } else // obtuse { (TDAreaPtr)[(*fi).V(0)].A += vcg::DoubleArea((*fi)) / 6.0; (TDAreaPtr)[(*fi).V(1)].A += vcg::DoubleArea((*fi)) / 6.0; (TDAreaPtr)[(*fi).V(2)].A += vcg::DoubleArea((*fi)) / 6.0; } } for(fi=m.face.begin();fi!=m.face.end();++fi) if( !(*fi).IsD() ) { angle0 = math::Abs(Angle( (*fi).P(1)-(*fi).P(0),(*fi).P(2)-(*fi).P(0) )); angle1 = math::Abs(Angle( (*fi).P(0)-(*fi).P(1),(*fi).P(2)-(*fi).P(1) )); angle2 = M_PI-(angle0+angle1); e01v = ( (*fi).V(1)->cP() - (*fi).V(0)->cP() ) ; e12v = ( (*fi).V(2)->cP() - (*fi).V(1)->cP() ) ; e20v = ( (*fi).V(0)->cP() - (*fi).V(2)->cP() ) ; TDContr[(*fi).V(0)] += ( e20v * (1.0/tan(angle1)) - e01v * (1.0/tan(angle2)) ) / 4.0; TDContr[(*fi).V(1)] += ( e01v * (1.0/tan(angle2)) - e12v * (1.0/tan(angle0)) ) / 4.0; TDContr[(*fi).V(2)] += ( e12v * (1.0/tan(angle0)) - e20v * (1.0/tan(angle1)) ) / 4.0; (*fi).V(0)->Kg() -= angle0; (*fi).V(1)->Kg() -= angle1; (*fi).V(2)->Kg() -= angle2; for(int i=0;i<3;i++) { if(vcg::face::IsBorder((*fi), i)) { CoordType e1,e2; vcg::face::Pos hp(&*fi, i, (*fi).V(i)); vcg::face::Pos hp1=hp; hp1.FlipV(); e1=hp1.v->cP() - hp.v->cP(); hp1.FlipV(); hp1.NextB(); e2=hp1.v->cP() - hp.v->cP(); (*fi).V(i)->Kg() -= math::Abs(Angle(e1,e2)); } } } for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi) if(!(*vi).IsD() /*&& !(*vi).IsB()*/) { if((TDAreaPtr)[*vi].A<=std::numeric_limits::epsilon()) { (*vi).Kh() = 0; (*vi).Kg() = 0; } else { (*vi).Kh() = (((TDContr)[*vi]* (*vi).cN()>0)?1.0:-1.0)*((TDContr)[*vi] / (TDAreaPtr) [*vi].A).Norm(); (*vi).Kg() /= (TDAreaPtr)[*vi].A; } } TDAreaPtr.Stop(); TDContr.Stop(); } /* Update the mean and the gaussian curvature of a vertex, using the * VF adiacency to walk around the vertex. Return the voronoi area * around the vertex. * if norm == true, the mean and the gaussian curvature are normalized * based on the paper * "optimizing 3d triangulations using discrete curvature analysis" * http://www2.in.tu-clausthal.de/~hormann/papers/Dyn.2001.OTU.pdf * */ static float VertexCurvature(VertexPointer v, bool norm = true) { // VFAdjacency required! assert(FaceType::HasVFAdjacency()); assert(VertexType::HasVFAdjacency()); VFIteratorType vfi(v); float A = 0; v->Kh() = 0; v->Kg() = 2 * M_PI; while (!vfi.End()) { if (!vfi.F()->IsD()) { FacePointer f = vfi.F(); int i = vfi.I(); VertexPointer v0 = f->V0(i), v1 = f->V1(i), v2 = f->V2(i); float ang0 = math::Abs(Angle(v1->P() - v0->P(), v2->P() - v0->P() )); float ang1 = math::Abs(Angle(v0->P() - v1->P(), v2->P() - v1->P() )); float ang2 = M_PI - ang0 - ang1; float s01 = SquaredDistance(v1->P(), v0->P()); float s02 = SquaredDistance(v2->P(), v0->P()); // voronoi cell of current vertex if (ang0 >= M_PI/2) A += (0.5f * DoubleArea(*f) - (s01 * tan(ang1) + s02 * tan(ang2)) / 8.0 ); else if (ang1 >= M_PI/2) A += (s01 * tan(ang0)) / 8.0; else if (ang2 >= M_PI/2) A += (s02 * tan(ang0)) / 8.0; else // non obctuse triangle A += ((s02 / tan(ang1)) + (s01 / tan(ang2))) / 8.0; // gaussian curvature update v->Kg() -= ang0; // mean curvature update ang1 = math::Abs(Angle(f->N(), v1->N())); ang2 = math::Abs(Angle(f->N(), v2->N())); v->Kh() += ( (math::Sqrt(s01) / 2.0) * ang1 + (math::Sqrt(s02) / 2.0) * ang2 ); } ++vfi; } v->Kh() /= 4.0f; if(norm) { if(A <= std::numeric_limits::epsilon()) { v->Kh() = 0; v->Kg() = 0; } else { v->Kh() /= A; v->Kg() /= A; } } return A; } }; } } #endif