/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_TRI_UPDATE_SELECTION #define __VCG_TRI_UPDATE_SELECTION namespace vcg { namespace tri { /// \ingroup trimesh /// \brief A stack for saving and restoring selection. /** This class is used to save the current selection onto a stack for later use. \todo it should be generalized to other attributes with a templated approach. */ template class SelectionStack { typedef typename ComputeMeshType::template PerVertexAttributeHandle< bool > vsHandle; typedef typename ComputeMeshType::template PerEdgeAttributeHandle< bool > esHandle; typedef typename ComputeMeshType::template PerFaceAttributeHandle< bool > fsHandle; public: SelectionStack(ComputeMeshType &m) { _m=&m; } bool push() { vsHandle vsH = Allocator::template AddPerVertexAttribute< bool >(*_m); esHandle esH = Allocator::template AddPerEdgeAttribute< bool >(*_m); fsHandle fsH = Allocator::template AddPerFaceAttribute< bool > (*_m); typename ComputeMeshType::VertexIterator vi; for(vi = _m->vert.begin(); vi != _m->vert.end(); ++vi) if( !(*vi).IsD() ) vsH[*vi] = (*vi).IsS() ; typename ComputeMeshType::EdgeIterator ei; for(ei = _m->edge.begin(); ei != _m->edge.end(); ++ei) if( !(*ei).IsD() ) esH[*ei] = (*ei).IsS() ; typename ComputeMeshType::FaceIterator fi; for(fi = _m->face.begin(); fi != _m->face.end(); ++fi) if( !(*fi).IsD() ) fsH[*fi] = (*fi).IsS() ; vsV.push_back(vsH); esV.push_back(esH); fsV.push_back(fsH); return true; } bool popOr() { return pop(true); } bool pop(bool mergeFlag=false) { if(vsV.empty()) return false; vsHandle vsH = vsV.back(); esHandle esH = esV.back(); fsHandle fsH = fsV.back(); if(! (Allocator::template IsValidHandle(*_m, vsH))) return false; typename ComputeMeshType::VertexIterator vi; for(vi = _m->vert.begin(); vi != _m->vert.end(); ++vi) if( !(*vi).IsD() ) { if(vsH[*vi]) (*vi).SetS(); else if(!mergeFlag) (*vi).ClearS(); } typename ComputeMeshType::EdgeIterator ei; for(ei = _m->edge.begin(); ei != _m->edge.end(); ++ei) if( !(*ei).IsD() ) { if(esH[*ei]) (*ei).SetS(); else if(!mergeFlag) (*ei).ClearS(); } typename ComputeMeshType::FaceIterator fi; for(fi = _m->face.begin(); fi != _m->face.end(); ++fi) if( !(*fi).IsD() ) { if(fsH[*fi]) (*fi).SetS(); else if(!mergeFlag) (*fi).ClearS(); } Allocator::template DeletePerVertexAttribute(*_m,vsH); Allocator::template DeletePerEdgeAttribute(*_m,esH); Allocator::template DeletePerFaceAttribute(*_m,fsH); vsV.pop_back(); esV.pop_back(); fsV.pop_back(); return true; } private: ComputeMeshType *_m; std::vector vsV; std::vector esV; std::vector fsV; }; /// \ingroup trimesh /// \headerfile selection.h vcg/complex/algorithms/update/selection.h /// \brief Management, updating and conditional computation of selections (per-vertex, per-edge, and per-face). /** This class is used to compute or update the selected bit flag that can be stored in the vertex, edge or face component of a mesh. */ template class UpdateSelection { public: typedef ComputeMeshType MeshType; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::EdgeIterator EdgeIterator; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; typedef typename vcg::Box3 Box3Type; /// \brief This function select all the vertices. static size_t VertexAll(MeshType &m) { for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if( !(*vi).IsD() ) (*vi).SetS(); return m.vn; } /// \brief This function select all the edges. static size_t EdgeAll(MeshType &m) { for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei) if( !(*ei).IsD() ) (*ei).SetS(); return m.fn; } /// \brief This function select all the faces. static size_t FaceAll(MeshType &m) { for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() ) (*fi).SetS(); return m.fn; } /// \brief This function clear the selection flag for all the vertices. static size_t VertexClear(MeshType &m) { for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if( !(*vi).IsD() ) (*vi).ClearS(); return 0; } /// \brief This function clears the selection flag for all the edges. static size_t EdgeClear(MeshType &m) { for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei) if( !(*ei).IsD() ) (*ei).ClearS(); return 0; } /// \brief This function clears the selection flag for all the faces. static size_t FaceClear(MeshType &m) { for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() ) (*fi).ClearS(); return 0; } /// \brief This function clears the selection flag for all the elements of a mesh (vertices, edges, and faces). static void Clear(MeshType &m) { VertexClear(m); EdgeClear(m); FaceClear(m); } /// \brief This function returns the number of selected faces. static size_t FaceCount(MeshType &m) { size_t selCnt=0; for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD() && (*fi).IsS()) ++selCnt; return selCnt; } /// \brief This function returns the number of selected edges. static size_t EdgeCount(MeshType &m) { size_t selCnt=0; for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei) if(!(*ei).IsD() && (*ei).IsS()) ++selCnt; return selCnt; } /// \brief This function returns the number of selected vertices. static size_t VertexCount(MeshType &m) { size_t selCnt=0; for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && (*vi).IsS()) ++selCnt; return selCnt; } /// \brief This function inverts the selection flag for all the faces. static size_t FaceInvert(MeshType &m) { size_t selCnt=0; for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { if((*fi).IsS()) (*fi).ClearS(); else { (*fi).SetS(); ++selCnt; } } return selCnt; } /// \brief This function inverts the selection flag for all the edges. static size_t EdgeInvert(MeshType &m) { size_t selCnt=0; for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei) if(!(*ei).IsD()) { if((*ei).IsS()) (*ei).ClearS(); else { (*ei).SetS(); ++selCnt; } } return selCnt; } /// \brief This function inverts the selection flag for all the vertices. static size_t VertexInvert(MeshType &m) { size_t selCnt=0; for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) { if((*vi).IsS()) (*vi).ClearS(); else { (*vi).SetS(); ++selCnt; } } return selCnt; } /// \brief Select all the vertices that are touched by at least a single selected faces static size_t VertexFromFaceLoose(MeshType &m, bool preserveSelection=false) { size_t selCnt=0; if(!preserveSelection) VertexClear(m); for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() && (*fi).IsS()) for(int i = 0; i < (*fi).VN(); ++i) if( !(*fi).V(i)->IsS()) { (*fi).V(i)->SetS(); ++selCnt; } return selCnt; } /// \brief Select all the vertices that are touched by at least a single selected edge static size_t VertexFromEdgeLoose(MeshType &m, bool preserveSelection=false) { size_t selCnt=0; if(!preserveSelection) VertexClear(m); for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei) if( !(*ei).IsD() && (*ei).IsS()) { if( !(*ei).V(0)->IsS()) { (*ei).V(0)->SetS(); ++selCnt; } if( !(*ei).V(1)->IsS()) { (*ei).V(1)->SetS(); ++selCnt; } } return selCnt; } /// \brief Select ONLY the vertices that are touched ONLY by selected faces /** In other words this function will select all the vertices having all the faces incident on them selected. */ static size_t VertexFromFaceStrict(MeshType &m, bool preserveSelection=false) { SelectionStack ss(m); if(preserveSelection) ss.push(); VertexFromFaceLoose(m); for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() && !(*fi).IsS()) for(int i = 0; i < (*fi).VN(); ++i) (*fi).V(i)->ClearS(); if(preserveSelection) ss.popOr(); return VertexCount(m); } /// \brief Select ONLY the faces with ALL the vertices selected static size_t FaceFromVertexStrict(MeshType &m, bool preserveSelection=false) { SelectionStack ss(m); if(preserveSelection) ss.push(); size_t selCnt=0; FaceClear(m); for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD()) { bool selFlag=true; for(int i = 0; i < (*fi).VN(); ++i) if(!(*fi).V(i)->IsS()) selFlag =false; if(selFlag) { (*fi).SetS(); ++selCnt; } } if(preserveSelection) ss.popOr(); return selCnt; } /// \brief Select all the faces with at least one selected vertex static size_t FaceFromVertexLoose(MeshType &m, bool preserveSelection=false) { size_t selCnt=0; if(!preserveSelection) FaceClear(m); for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD()) { bool selVert=false; for(int i = 0; i < (*fi).VN(); ++i) if((*fi).V(i)->IsS()) selVert=true; if(selVert) { (*fi).SetS(); ++selCnt; } } return selCnt; } /// \brief This function dilate the face selection by simply first selecting all the vertices touched by the faces and then all the faces touched by these vertices /// Note: it destroys the vertex selection. static size_t FaceDilate(MeshType &m) { tri::UpdateSelection::VertexFromFaceLoose(m); return tri::UpdateSelection::FaceFromVertexLoose(m); } /// \brief This function erode the face selection by simply first selecting only the vertices completely surrounded by face and then the only faces with all the selected vertices /// Note: it destroys the vertex selection. static size_t FaceErode(MeshType &m) { tri::UpdateSelection::VertexFromFaceStrict(m); return tri::UpdateSelection::FaceFromVertexStrict(m); } /// \brief This function select the vertices with the border flag set static size_t VertexFromBorderFlag(MeshType &m, bool preserveSelection=false) { size_t selCnt=0; if(!preserveSelection) VertexClear(m); for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if( !(*vi).IsD() ) { if((*vi).IsB() ) { (*vi).SetS(); ++selCnt; } } return selCnt; } /// \brief This function select the faces that have an edge with the border flag set. static size_t FaceFromBorderFlag(MeshType &m, bool preserveSelection=false) { tri::RequireTriangularMesh(m); size_t selCnt=0; if(!preserveSelection) FaceClear(m); for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() ) { bool bordFlag=false; for(int i = 0; i < 3; ++i) if((*fi).IsB(i)) bordFlag=true; if(bordFlag) { (*fi).SetS(); ++selCnt; } } return selCnt; } /// \brief This function select the faces that have an edge outside the given range. /// You can skip the second parameter to choose all the edges smaller than a given lenght static size_t FaceOutOfRangeEdge(MeshType &m, ScalarType MinEdgeThr, ScalarType MaxEdgeThr=(std::numeric_limits::max)(), bool preserveSelection=false) { if(!preserveSelection) FaceClear(m); size_t selCnt = 0; MinEdgeThr=MinEdgeThr*MinEdgeThr; MaxEdgeThr=MaxEdgeThr*MaxEdgeThr; for(FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi) if(!(*fi).IsD()) { for(int i=0;i<(*fi).VN();++i) { const ScalarType squaredEdge=SquaredDistance((*fi).V0(i)->cP(),(*fi).V1(i)->cP()); if((squaredEdge<=MinEdgeThr) || (squaredEdge>=MaxEdgeThr) ) { selCnt++; (*fi).SetS(); break; // skip the rest of the edges of the tri } } } return selCnt; } /// \brief This function expand current selection to cover the whole connected component. static size_t FaceConnectedFF(MeshType &m) { // it also assumes that the FF adjacency is well computed. RequireFFAdjacency(m); UpdateFlags::FaceClearV(m); std::deque visitStack; size_t selCnt=0; for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() && (*fi).IsS() && !(*fi).IsV() ) visitStack.push_back(&*fi); while(!visitStack.empty()) { FacePointer fp = visitStack.front(); visitStack.pop_front(); assert(!fp->IsV()); fp->SetV(); for(int i=0;iVN();++i) { FacePointer ff = fp->FFp(i); if(! ff->IsS()) { ff->SetS(); ++selCnt; visitStack.push_back(ff); assert(!ff->IsV()); } } } return selCnt; } /// \brief Select the faces whose quality is in the specified closed interval. static size_t FaceFromQualityRange(MeshType &m,float minq, float maxq, bool preserveSelection=false) { size_t selCnt=0; if(!preserveSelection) FaceClear(m); RequirePerFaceQuality(m); for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { if( (*fi).Q()>=minq && (*fi).Q()<=maxq ) { (*fi).SetS(); ++selCnt; } } return selCnt; } /// \brief Select the vertices whose quality is in the specified closed interval. static size_t VertexFromQualityRange(MeshType &m,float minq, float maxq, bool preserveSelection=false) { size_t selCnt=0; if(!preserveSelection) VertexClear(m); RequirePerVertexQuality(m); for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) { if( (*vi).Q()>=minq && (*vi).Q()<=maxq ) { (*vi).SetS(); ++selCnt; } } return selCnt; } /// \brief Select the vertices contained in the specified Box static size_t VertexInBox( MeshType & m, const Box3Type &bb, bool preserveSelection=false) { if(!preserveSelection) VertexClear(m); int selCnt=0; for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) { if(bb.IsIn((*vi).cP()) ) { (*vi).SetS(); ++selCnt; } } return selCnt; } /// \brief Select the border vertices that form a corner along the border /// with an angle that is below a certain threshold (e.g. with 90 will select all the acute angles) /// It assumes that the Per-Vertex border Flag has been set. static size_t VertexCornerBorder(MeshType &m, ScalarType angleRad, bool preserveSelection=false) { if(!preserveSelection) VertexClear(m); SimpleTempData angleSumH(m.vert,0); int selCnt=0; for(auto vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) angleSumH[vi]=0; for(auto fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { for(int i=0;i<(*fi).VN();++i) angleSumH[fi->V(i)] += face::WedgeAngleRad(*fi,i); } for(auto vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) { if(angleSumH[vi]IsB()) { (*vi).SetS(); ++selCnt; } } return selCnt; } void VertexNonManifoldEdges(MeshType &m, bool preserveSelection=false) { tri::RequireFFAdjacency(m); if(!preserveSelection) VertexClear(m); for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) { for(int i=0;iVN();++i) if(!IsManifold(*fi,i)){ (*fi).V0(i)->SetS(); (*fi).V1(i)->SetS(); } } } }; // end class } // End namespace } // End namespace #endif