/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.9 2005/11/12 06:47:18 cignoni Added Enhancement, removed type warnings, started to refactor code in order to remove the unnecessary generality of the class. Revision 1.8 2004/09/28 09:45:17 cignoni Added MapFalseColor Revision 1.7 2004/09/16 14:23:57 ponchio fixed gcc template compatibility issues. Revision 1.6 2004/09/10 14:02:20 cignoni Added Cone directions Revision 1.5 2004/09/09 22:59:21 cignoni Removed many small warnings Revision 1.4 2004/09/09 22:37:48 cignoni Integrated lost modifications... Revision 1.3 2004/09/09 14:35:54 ponchio Various changes for gcc compatibility Revision 1.2 2004/07/11 22:13:30 cignoni Added GPL comments ****************************************************************************/ #ifndef __VCG_MESH_VISIBILITY #define __VCG_MESH_VISIBILITY #include #include #include #include #include "simplepic.h" #include namespace vcg { // Base Class che definisce le varie interfaccie; template class VisShader { public : enum {VisMax=MAXVIS}; VisShader(MESH_TYPE &me):m(me) { CullFlag= false; IsClosedFlag = false; ZTWIST=1e-3; SplitNum=1; CameraViewing=false; } typedef Point3 Point3x; typedef typename MESH_TYPE::CoordType CoordType; typedef typename MESH_TYPE::ScalarType ScalarType; typedef typename MESH_TYPE::VertexType VertexType; typedef typename MESH_TYPE::VertexPointer VertexPointer; typedef typename MESH_TYPE::VertexIterator VertexIterator; typedef typename MESH_TYPE::FaceIterator FaceIterator; typedef typename MESH_TYPE::FaceType FaceType; typedef Matrix44 Matrix44x; typedef Box3 Box3x; // The Basic Data the mesh and its wrapper; MESH_TYPE &m; std::vector OMV; // Occluder Mesh Vector; // la visibilita' e' in float, per ogni entita' // 1 significa che e' totalmente visibile per una data direzione. std::vector VV; std::vector< Point3x > VN; // Vettore delle normali che ho usato per calcolare la mask e i float in W; // User defined parameters and flags bool IsClosedFlag; float ZTWIST; bool CullFlag; // Enable the frustum culling. Useful when the splitting value is larger than 2 int SplitNum; protected: bool CameraViewing; //Camera Cam; public: /********************************************************/ // Generic functions with Specialized code for every subclass virtual void MapVisibility(float Gamma=1, float LowPass=0, float HighPass=1,float Scale=1.0)=0; //virtual void ApplyLightingEnvironment(std::vector &W, float Gamma); virtual int GLAccumPixel( std::vector &PixSeen)=0; virtual bool ReadVisibility(const char * /*filename*/){assert( 0); return false;} virtual bool WriteVisibility(const char * /*filename*/){assert( 0); return false;} /********************************************************/ // Generic functions with same code for every subclass void Clear() { fill(VV.begin(),VV.end(),0); } void InitGL() { glPushAttrib(GL_COLOR_BUFFER_BIT ); ::glClearColor (1.0, 1.0, 1.0, 0.0); glMatrixMode (GL_PROJECTION); glPushMatrix(); glMatrixMode (GL_MODELVIEW); glPushMatrix(); } void RestoreGL() { glMatrixMode (GL_PROJECTION); glPopMatrix(); glMatrixMode (GL_MODELVIEW); glPopMatrix(); glPopAttrib(); } /* Funzione principale di conversione in visibilita' Dati i due vettori PixSeen e PixNotSeen che indicano per ogni entita' (vertice o faccia) quanti sono, rispettivamente, i pixel visibili e occlusi, questa funzione calcola un valore float per ogni entita' che indica quanto e' visibile lungo una data direzione camera == 1 significa completamente visibile == 0 significa completamente occluso. */ void AddPixelCount(std::vector &_VV, const std::vector &PixSeen) { assert(_VV.size()==PixSeen.size()); for(unsigned int i=0;i0) _VV[i]+= 1; } //void SetVisibilityMask(std::vector< std::bitset > &_VM, const std::vector &PixSeen, const int dir) // { // assert(_VM.size()==PixSeen.size()); // for(int i=0;i0) _VM[i][dir]=true; // } /******************************* Funzioni ad alto livello che computano le Visibility Mask per varie distribuzioni di direzioni *******************************/ // Funzione Generica // Calcola l'occlusion in base all'insieme VN di direzioni. void Compute( CallBack *cb) { //cb(buf.format("Start to compute %i dir\n",VN.size())); InitGL(); int t00=clock(); VV.resize(m.vert.size()); std::vector PixSeen(VV.size(),0); int TotRay=0,HitRay=0; for(unsigned int i=0;i nvt; assert(0 && "This is only my guess (to compile). (Ponchio)"); assert(0 && "Was: GenNormal(nn*2, nvt);"); GenNormal::Uniform(nn*2,nvt); for(int i=0;i0) VN.push_back(nvt[i]); printf("Asked %i normal, got %i normals\n",nn,VN.size()); Compute(cb); } void ComputeUniformCone(int nn, std::vector &vv, ScalarType AngleRad, Point3x &ConeDir, CallBack *cb) { VN.clear(); GenNormal::UniformCone(nn,VN,AngleRad,ConeDir); typename std::vector::iterator vi; for(vi=VN.begin();vi!=VN.end();++vi) vv.push_back(*vi); char buf[256]; sprintf(buf,"Asked %i normal, got %i normals\n",nn,VN.size()); cb(buf); Compute(cb); } void ComputeUniform(int nn, std::vector &vv, CallBack *cb) { VN.clear(); GenNormal::Uniform(nn,VN); typename std::vector::iterator vi; for(vi=VN.begin();vi!=VN.end();++vi) vv.push_back(*vi); char buf[256]; sprintf(buf,"Asked %i normal, got %i normals\n",nn,VN.size()); cb(buf); Compute(cb); } void ComputeSingle(Point3x &dir, std::vector &vv,CallBack *cb) { VN.clear(); VN.push_back(dir); vv.push_back(dir); printf("Computing one direction (%f %f %f)\n",dir[0],dir[1],dir[2]); Compute(cb); } /**********************************************************/ int SplittedRendering(Point3x &ViewDir, std::vector &PixSeen, CallBack *cb=DummyCallBack) { int tt=0; int i,j; for(i=0;i &PixSeen, CallBack *cb=DummyCallBack) { int t0=clock(); std::string buf; int added=SplittedRendering(BaseDir, PixSeen,cb); int t1=clock(); printf("ComputeSingleDir %i msec\n",t1-t0); } void ComputeAverageVisibilityDirection() { int i,j; VD.resize(VM.size()); for(j=0;j &msk=VM[j]; for(i=0;i &LE, Point3x dir, ScalarType DegAngle1, ScalarType DegAngle2) { LE.clear(); LE.resize(VN.size(),0); int i; for(i=0;iDegAngle2) { LE[i]=0; continue; } LE[i] = 1.0-(a-DegAngle1)/(DegAngle2-DegAngle1); } // last step normalize the weights; ScalarType sum=0; for(i=0;i class VertexVisShader : public VisShader { public : // Function Members VertexVisShader(MESH_TYPE &me):VisShader(me) { // la mesh DEVE avere colore per vertice if(! m.HasPerVertexColor()) assert(0); } void Init() { VV.resize(m.vert.size()); } void Compute(int nn); void DrawFill (MESH_TYPE &mm) { static GLuint dl=0; if(mm.face.empty()) { AMesh::VertexIterator vi; glBegin(GL_POINTS); for(vi=mm.vert.begin();vi!=mm.vert.end();++vi) { if(ColorFlag) glColor((*vi).C()); glVertex((*vi).P()); } glEnd(); } else { glBegin(GL_TRIANGLES); FaceIterator fi; for(fi=mm.face.begin();fi!=mm.face.end();++fi) { glVertex((*fi).V(0)->P()); glVertex((*fi).V(1)->P()); glVertex((*fi).V(2)->P()); } glEnd(); } } /***************************************************************************/ //VertexVisibility // Funzione Principale restituisce per ogni entita' quanti px si vedono o no. int GLAccumPixel( std::vector &PixSeen) { SimplePic snapZ; SimplePic snapC; glClearColor(Color4b::Black); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushAttrib(GL_CURRENT_BIT | GL_ENABLE_BIT | GL_LIGHTING_BIT | GL_POLYGON_BIT ); glDisable(GL_LIGHTING); glDepthRange(0.0f,1.0f); glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE); glDepthMask(GL_TRUE); glDrawBuffer(GL_BACK); glReadBuffer(GL_BACK); /////** Si disegnano le front face **///// glDepthRange(2.0*ZTWIST,1.0f); if(IsClosedFlag) glColorMask(GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE); glEnable(GL_CULL_FACE); glCullFace(GL_BACK); glColor(Color4b::Red); DrawFill(m); if(!IsClosedFlag) { glCullFace(GL_FRONT); glColor(Color4b::Black); DrawFill(m); snapC.OpenGLSnap(); } int cnt=0; snapZ.OpenGLSnap(GL_DEPTH_COMPONENT); glDepthRange(0,1.0f-2.0*ZTWIST); double MM[16]; glGetDoublev(GL_MODELVIEW_MATRIX,MM); double MP[16]; glGetDoublev(GL_PROJECTION_MATRIX,MP); int VP[4]; glGetIntegerv(GL_VIEWPORT,VP); double tx,ty,tz; for(unsigned int i=0;i=0 && tx=0 && ty VV2; std::vector VC(VV.size(),1); VV2=VV; for(fi=m.face.begin();fi!=m.face.end();++fi) for(int i=0;i<3;++i) { VV2[(*fi).V(i)-&*m.vert.begin()] += VV[(*fi).V1(i)-&*m.vert.begin()]; ++VC[(*fi).V(i)-&*m.vert.begin()]; } if(!Enhance) for(unsigned int i=0;iHighPass) gval=HighPass; (*vi).C().SetGrayShade(Scale*pow((gval-LowPass)/(HighPass-LowPass),Gamma)); } } //void ApplyLightingEnvironment(std::vector &W, float Gamma=1) // { // assert(W.size()==VN.size()); // MESH_TYPE::VertexIterator vi; // // for(vi=m.vert.begin();vi!=m.vert.end();++vi) // { // float gray=0; // bitset &msk=VM[vi-m.vert.begin()]; // for(int i=0;i