#ifndef MESH_TO_MATRIX #define MESH_TO_MATRIX #include #include #include #include #include #include using namespace std; namespace vcg{ template < typename TriMeshType > class MeshToMatrix { // define types typedef typename TriMeshType::FaceType FaceType; typedef typename TriMeshType::VertexType VertexType; typedef typename TriMeshType::CoordType CoordType; typedef typename TriMeshType::ScalarType ScalarType; static void GetTriEdgeAdjacency(const Eigen::MatrixXd& V, const Eigen::MatrixXi& F, Eigen::MatrixXi& EV, Eigen::MatrixXi& FE, Eigen::MatrixXi& EF) { //assert(igl::is_manifold(V,F)); std::vector > ETT; for(int f=0;f v2) std::swap(v1,v2); std::vector r(4); r[0] = v1; r[1] = v2; r[2] = f; r[3] = i; ETT.push_back(r); } std::sort(ETT.begin(),ETT.end()); // count the number of edges (assume manifoldness) int En = 1; // the last is always counted for(unsigned i=0;i& r1 = ETT[i]; EV(En,0) = r1[0]; EV(En,1) = r1[1]; EF(En,0) = r1[2]; FE(r1[2],r1[3]) = En; } else { std::vector& r1 = ETT[i]; std::vector& r2 = ETT[i+1]; EV(En,0) = r1[0]; EV(En,1) = r1[1]; EF(En,0) = r1[2]; EF(En,1) = r2[2]; FE(r1[2],r1[3]) = En; FE(r2[2],r2[3]) = En; ++i; // skip the next one } ++En; } // Sort the relation EF, accordingly to EV // the first one is the face on the left of the edge for(unsigned i=0; i= 0 && faces(i,j) < mesh.VN()); } } // return normals of the mesh static void GetNormalData(const TriMeshType &mesh, Eigen::MatrixXd &Nvert, Eigen::MatrixXd &Nface) { // create eigen matrix of vertices Nvert=Eigen::MatrixXd(mesh.VN(), 3); Nface=Eigen::MatrixXd(mesh.FN(), 3); // per vertices normals for (int i = 0; i < mesh.VN(); i++) for (int j = 0; j < 3; j++) Nvert(i,j) = mesh.vert[i].cN()[j]; // per vertices normals for (int i = 0; i < mesh.FN(); i++) for (int j = 0; j < 3; j++) Nface(i,j) = mesh.face[i].cN()[j]; } // get face to face adjacency static void GetTriFFAdjacency(TriMeshType &mesh, Eigen::MatrixXi &FFp, Eigen::MatrixXi &FFi) { vcg::tri::UpdateTopology::FaceFace(mesh); // FFp = Eigen::PlainObjectBase::Constant(mesh.FN(),3,-1); // FFi = Eigen::PlainObjectBase::Constant(mesh.FN(),3,-1); FFp = Eigen::MatrixXi(mesh.FN(),3); FFi = Eigen::MatrixXi(mesh.FN(),3); for (int i = 0; i < mesh.FN(); i++) for (int j = 0; j < 3; j++) { FaceType *AdjF=mesh.face[i].FFp(j); if (AdjF==&mesh.face[i]) { FFp(i,j)=-1; FFi(i,j)=-1; continue; } int AdjF_Index=vcg::tri::Index(mesh,AdjF); int OppF_Index=mesh.face[i].FFi(j); FFp(i,j)=AdjF_Index; FFi(i,j)=OppF_Index; assert(AdjF_Index >= 0 && AdjF_Index < mesh.FN()); } } // get edge to face and edge to vertex adjacency static void GetTriEdgeAdjacency(const TriMeshType &mesh, Eigen::MatrixXi& EV, Eigen::MatrixXi& FE, Eigen::MatrixXi& EF) { Eigen::MatrixXi faces; Eigen::MatrixXd vert; GetTriMeshData(mesh,faces,vert); GetTriEdgeAdjacency(vert,faces,EV,FE,EF); } static Eigen::Vector3d VectorFromCoord(const CoordType &v) { // create eigen vector Eigen::Vector3d c; // copy coordinates for (int i = 0; i < 3; i++) c(i) = v[i]; return c; } }; } #endif // MESH_TO_MATRIX_CONVERTER