/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCGLIB_CURVE_ON_SURF_H #define __VCGLIB_CURVE_ON_SURF_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace vcg { namespace tri { /// \ingroup trimesh /// \brief A class for managing curves on a 2manifold. /** This class is used to project/simplify/smooth polylines over a triangulated surface. */ template class CoM { public: typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::CoordType CoordType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::EdgeIterator EdgeIterator; typedef typename MeshType::EdgeType EdgeType; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; typedef Box3 Box3Type; typedef Segment3 Segment3Type; typedef typename vcg::GridStaticPtr MeshGrid; typedef typename vcg::GridStaticPtr EdgeGrid; typedef typename face::Pos PosType; typedef typename tri::UpdateTopology::PEdge PEdge; class Param { public: ScalarType surfDistThr; // Distance between surface and curve; used in simplify and refine ScalarType polyDistThr; // Distance between the ScalarType minRefEdgeLen; // Minimal admitted Edge Lenght (used in refine: never make edge shorther than this value) ScalarType maxSimpEdgeLen; // Maximal admitted Edge Lenght (used in simplify: never make edges longer than this value) ScalarType maxSmoothDelta; // The maximum movement that is admitted during smoothing. ScalarType maxSnapThr; // The maximum distance allowed when snapping a vertex of the polyline onto a mesh vertex ScalarType gridBailout; // The maximum distance bailout used in grid sampling ScalarType barycentricSnapThr; // The maximum distance bailout used in grid sampling Param(MeshType &m) { Default(m);} void Default(MeshType &m) { surfDistThr = m.bbox.Diag()/1000.0; polyDistThr = m.bbox.Diag()/5000.0; minRefEdgeLen = m.bbox.Diag()/16000.0; maxSimpEdgeLen = m.bbox.Diag()/100.0; maxSmoothDelta = m.bbox.Diag()/100.0; maxSnapThr = m.bbox.Diag()/1000.0; gridBailout = m.bbox.Diag()/20.0; barycentricSnapThr = 0.05; } void Dump() const { printf("surfDistThr = %6.4f\n",surfDistThr ); printf("polyDistThr = %6.4f\n",polyDistThr ); printf("minRefEdgeLen = %6.4f\n",minRefEdgeLen ); printf("maxSimpEdgeLen = %6.4f\n",maxSimpEdgeLen ); printf("maxSmoothDelta = %6.4f\n",maxSmoothDelta); } }; // The Data Members MeshType &base; MeshGrid uniformGrid; Param par; CoM(MeshType &_m) :base(_m),par(_m){} FaceType *GetClosestFace(const CoordType &p) { ScalarType closestDist; CoordType closestP; return vcg::tri::GetClosestFaceBase(base,uniformGrid,p, p.gridBailout, closestDist, closestP); } FaceType *GetClosestFaceIP(const CoordType &p, CoordType &ip) { ScalarType closestDist; CoordType closestP,closestN; return vcg::tri::GetClosestFaceBase(base,uniformGrid,p, this->par.gridBailout, closestDist, closestP,closestN,ip); } FaceType *GetClosestFacePoint(const CoordType &p, CoordType &closestP) { ScalarType closestDist; return vcg::tri::GetClosestFaceBase(base,uniformGrid,p, this->par.gridBailout, closestDist, closestP); } bool IsSnappedEdge(CoordType &ip, int &ei) { for(int i=0;i<3;++i) if(ip[i]>0.0 && ip[(i+1)%3]>0.0 && ip[(i+2)%3]==0.0 ) { ei=i; return true; } ei=-1; return false; } // Given a baricentric coordinate finds that we assume that snaps onto an edge, it finds the vertex on which it is snapping bool IsSnappedVertex(CoordType &ip, int &vi) { for(int i=0;i<3;++i) if(ip[i]==1.0 && ip[(i+1)%3]==0.0 && ip[(i+2)%3]==0.0 ) { vi=i; return true; } vi=-1; return false; } // Given a baricentric coordinate finds that we assume that snaps onto an edge, it finds the vertex on which it is snapping VertexPointer FindVertexSnap(FacePointer fp, CoordType &ip) { for(int i=0;i<3;++i) if(ip[i]==1.0 && ip[(i+1)%3]==0.0 && ip[(i+2)%3]==0.0 ) return fp->V(i); return 0; } /** * @brief MarkFauxEdgeWithPolyLine marks the edges of basemesh as non-faux when they coincide with the polyline ones * * @param poly * @return true if all the edges of the polyline are snapped onto the mesh. * * Use this function together with the CutMeshAlongCrease function to actually cut the mesh with a snapped polyline. * */ bool MarkFauxEdgeWithPolyLine(MeshType &poly,bool markFlag=true) { if(markFlag) tri::UpdateFlags::FaceSetF(base); tri::UpdateTopology::VertexFace(base); tri::UpdateTopology::FaceFace(base); for(EdgeIterator ei=poly.edge.begin(); ei!=poly.edge.end();++ei) { CoordType ip0,ip1; FaceType *f0 = GetClosestFaceIP(ei->cP(0),ip0); FaceType *f1 = GetClosestFaceIP(ei->cP(1),ip1); if(BarycentricSnap(ip0) && BarycentricSnap(ip1)) { VertexPointer v0 = FindVertexSnap(f0,ip0); VertexPointer v1 = FindVertexSnap(f1,ip1); if(v0==0 || v1==0) return false; if(v0==v1) return false; FacePointer ff0,ff1; int e0,e1; bool ret=face::FindSharedFaces(v0,v1,ff0,ff1,e0,e1); if(ret){ assert(ret); assert(ff0->V(e0)==v0 || ff0->V(e0)==v1); ff0->ClearF(e0); ff1->ClearF(e1); } else { return false; } } else { return false; } } return true; } ScalarType MinDistOnEdge(CoordType samplePnt, EdgeGrid &edgeGrid, MeshType &poly, CoordType &closestPoint) { ScalarType polyDist; EdgeType *cep = vcg::tri::GetClosestEdgeBase(poly,edgeGrid,samplePnt,par.gridBailout,polyDist,closestPoint); return polyDist; } // Given an edge of a mesh, supposedly intersecting the polyline, // we search on it the closest point to the polyline static ScalarType MinDistOnEdge(VertexType *v0,VertexType *v1, EdgeGrid &edgeGrid, MeshType &poly, CoordType &closestPoint) { ScalarType minPolyDist = std::numeric_limits::max(); const ScalarType sampleNum = 50; const ScalarType maxDist = poly.bbox.Diag()/10.0; for(ScalarType k = 0;kP()*k +v1->P()*(sampleNum-k))/sampleNum; EdgeType *cep = vcg::tri::GetClosestEdgeBase(poly,edgeGrid,samplePnt,maxDist,polyDist,closestPPoly); if(polyDist < minPolyDist) { minPolyDist = polyDist; closestPoint = samplePnt; // closestPoint = closestPPoly; } } return minPolyDist; } /** * @brief ExtractVertex * must extract an unambiguous representation of a vertex * to be used with attribute_seam.h * */ static inline void ExtractVertex(const MeshType & srcMesh, const FaceType & f, int whichWedge, const MeshType & dstMesh, VertexType & v) { (void)srcMesh; (void)dstMesh; // This is done to preserve every single perVertex property // perVextex Texture Coordinate is instead obtained from perWedge one. v.ImportData(*f.cV(whichWedge)); v.C() = f.cC(); } static inline bool CompareVertex(const MeshType & m, const VertexType & vA, const VertexType & vB) { (void)m; if(vA.C() == Color4b(Color4b::Red) && vB.C() == Color4b(Color4b::Blue) ) return false; if(vA.C() == Color4b(Color4b::Blue) && vB.C() == Color4b(Color4b::Red) ) return false; return true; } static CoordType QLerp(VertexType *v0, VertexType *v1) { ScalarType qSum = fabs(v0->Q())+fabs(v1->Q()); ScalarType w0 = (qSum - fabs(v0->Q()))/qSum; ScalarType w1 = (qSum - fabs(v1->Q()))/qSum; return v0->P()*w0 + v1->P()*w1; } /** * @brief SnapPolyline snaps the vertexes of a polyline onto the base mesh * @param poly * @param newVertVec the vector of the indexes of the snapped vertices * * Polyline vertices can be snapped either on vertexes or on edges. * Usually the only points that we should allow to not be snapped are the endpoints and non manifold points. * Vertexes are colored according to their snapping state */ void SnapPolyline(MeshType &poly) { tri::Allocator::CompactEveryVector(poly); tri::UpdateTopology::VertexEdge(poly); int vertSnapCnt=0; int edgeSnapCnt=0; int borderCnt=0,midCnt=0,nonmanifCnt=0; for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi) { CoordType ip; FaceType *f = GetClosestFaceIP(vi->cP(),ip); if(BarycentricSnap(ip)) { if(ip[0]>0 && ip[1]>0) { vi->P() = f->P(0)*ip[0]+f->P(1)*ip[1]; edgeSnapCnt++; assert(ip[2]==0); vi->C()=Color4b::White;} if(ip[0]>0 && ip[2]>0) { vi->P() = f->P(0)*ip[0]+f->P(2)*ip[2]; edgeSnapCnt++; assert(ip[1]==0); vi->C()=Color4b::White;} if(ip[1]>0 && ip[2]>0) { vi->P() = f->P(1)*ip[1]+f->P(2)*ip[2]; edgeSnapCnt++; assert(ip[0]==0); vi->C()=Color4b::White;} if(ip[0]==1.0) { vi->P() = f->P(0); vertSnapCnt++; assert(ip[1]==0 && ip[2]==0); vi->C()=Color4b::Black; } if(ip[1]==1.0) { vi->P() = f->P(1); vertSnapCnt++; assert(ip[0]==0 && ip[2]==0); vi->C()=Color4b::Black;} if(ip[2]==1.0) { vi->P() = f->P(2); vertSnapCnt++; assert(ip[0]==0 && ip[1]==0); vi->C()=Color4b::Black;} } else { int deg = edge::VEDegree(&*vi); if (deg > 2) { nonmanifCnt++; vi->C()=Color4b::Magenta; } if (deg < 2) { borderCnt++; vi->C()=Color4b::Green;} if (deg== 2) { midCnt++; vi->C()=Color4b::Blue;} } } printf("SnapPolyline %i vertices: snapped %i onto vert and %i onto edges %i nonmanif, %i border, %i mid\n", poly.vn, vertSnapCnt, edgeSnapCnt, nonmanifCnt,borderCnt,midCnt); fflush(stdout); int dupCnt=tri::Clean::RemoveDuplicateVertex(poly); tri::Allocator::CompactEveryVector(poly); if(dupCnt) printf("SnapPolyline: Removed %i Duplicated vertices\n",dupCnt); } void SelectBoundaryVertex(MeshType &poly) { tri::UpdateSelection::VertexClear(poly); tri::UpdateTopology::VertexEdge(poly); ForEachVertex(poly, [&](VertexType &v){ if(edge::VEDegree(&v)==1) v.SetS(); }); } void SelectUniformlyDistributed(MeshType &poly, int k) { tri::TrivialPointerSampler tps; ScalarType samplingRadius = tri::Stat::ComputeEdgeLengthSum(poly)/ScalarType(k); tri::SurfaceSampling >::EdgeMeshUniform(poly,tps,samplingRadius); for(int i=0;iSetS(); } /* * Make an edge mesh 1-manifold by splitting all the * vertexes that have more than two incident edges * * It performs the split in three steps. * - First it collects and counts the vertices to be splitten. * - Then it adds the vertices to the mesh and * - lastly it updates the poly with the newly added vertices. * * singSplitFlag allows to ubersplit each singularity in a number of vertex of the same order of its degree. * This is not really necessary but helps the management of sharp turns in the poly mesh. * \todo add corner detection and split. */ void DecomposeNonManifoldPolyline(MeshType &poly, bool singSplitFlag = true) { tri::Allocator::CompactEveryVector(poly); std::vector degreeVec(poly.vn, 0); tri::UpdateTopology::VertexEdge(poly); int neededVert=0; int delta; if(singSplitFlag) delta = 1; else delta = 2; for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi) { std::vector starVec; edge::VEStarVE(&*vi,starVec); degreeVec[tri::Index(poly, *vi)] = starVec.size(); if(starVec.size()>2) neededVert += starVec.size()-delta; } printf("DecomposeNonManifold Adding %i vert to a polyline of %i vert\n",neededVert,poly.vn); VertexIterator firstVi = tri::Allocator::AddVertices(poly,neededVert); for(size_t i=0;i2) { std::vector edgeStarVec; edge::VEStarVE(&(poly.vert[i]),edgeStarVec); assert(edgeStarVec.size() == degreeVec[i]); for(size_t j=delta;jV(0)) == i) ind = 0; else ind = 1; ep->V(ind) = &*firstVi; ep->V(ind)->P() = poly.vert[i].P(); ep->V(ind)->N() = poly.vert[i].N(); ++firstVi; } } } assert(firstVi == poly.vert.end()); } /** * @brief SplitMeshWithPolyline * @param poly * * First it splits the base mesh with all the non snapped points doing a standard 1 to 3 split; * */ void SplitMeshWithPolyline(MeshType &poly) { std::vector< std::pair > toSplitVec; // the index of the face to be split and the poly vertex to be used for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi) { CoordType ip; FaceType *f = GetClosestFaceIP(vi->cP(),ip); if(!BarycentricSnap(ip)) toSplitVec.push_back(std::make_pair(tri::Index(base,f),&*vi)); } printf("SplitMeshWithPolyline found %lu non snapped points\n",toSplitVec.size());fflush(stdout); FaceIterator newFi = tri::Allocator::AddFaces(base,toSplitVec.size()*2); VertexIterator newVi = tri::Allocator::AddVertices(base,toSplitVec.size()); tri::UpdateColor::PerVertexConstant(base,Color4b::White); for(size_t i =0; iP() = toSplitVec[i].second->P(); newVi->C()=Color4b::Green; face::TriSplit(&base.face[toSplitVec[i].first],&*(newFi++),&*(newFi++),&*(newVi++)); } Init(); // need to reset everthing SnapPolyline(poly); // Second loop to perform the face-face Edge split ********************** std::map, VertexPointer> edgeToPolyVertMap; for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi) { CoordType ip; FaceType *f = GetClosestFaceIP(vi->cP(),ip); if(!BarycentricSnap(ip)) { assert(0); } for(int i=0;i<3;++i) { if(ip[i]>0 && ip[(i+1)%3]>0 && ip[(i+2)%3]==0 ) { CoordType p0=f->P0(i); CoordType p1=f->P1(i); if (p0>p1) std::swap(p0,p1); if(edgeToPolyVertMap[make_pair(p0,p1)]) printf("Found an already used Edge %lu - %lu %lu!!!\n", tri::Index(base,f->V0(i)),tri::Index(base,f->V1(i)),tri::Index(poly,&*vi)); edgeToPolyVertMap[make_pair(p0,p1)]=&*vi; } } } printf("SplitMeshWithPolyline: Created a map of %lu edges to be split\n",edgeToPolyVertMap.size()); EdgePointPred ePred(edgeToPolyVertMap); EdgePointSplit eSplit(edgeToPolyVertMap); tri::UpdateTopology::FaceFace(base); tri::RefineE(base,eSplit,ePred); Init(); // need to reset everthing } void Init() { // Construction of the uniform grid UpdateNormal::PerFaceNormalized(base); UpdateTopology::FaceFace(base); uniformGrid.Set(base.face.begin(), base.face.end()); } void SimplifyMidEdge(MeshType &poly) { int startVn; int midEdgeCollapseCnt=0; tri::Allocator::CompactEveryVector(poly); do { startVn = poly.vn; for(int ei =0; eiP(),ip0); FaceType *f1=GetClosestFaceIP(v1->P(),ip1); bool snap0=BarycentricSnap(ip0); bool snap1=BarycentricSnap(ip1); int e0i,e1i; bool e0 = IsSnappedEdge(ip0,e0i); bool e1 = IsSnappedEdge(ip1,e1i); if(e0 && e1) if( ( f0 == f1 && e0i == e1i) || ( f0 == f1->FFp(e1i) && e0i == f1->FFi(e1i)) || (f0->FFp(e0i) == f1 && f0->FFi(e0i) == e1i) || (f0->FFp(e0i) == f1->FFp(e1i) && f0->FFi(e0i) == f1->FFi(e1i)) ) { CoordType newp = (v0->P()+v1->P())/2.0; v0->P()=newp; v1->P()=newp; midEdgeCollapseCnt++; } } tri::Clean::RemoveDuplicateVertex(poly); tri::Allocator::CompactEveryVector(poly); // printf("SimplifyMidEdge %5i -> %5i %i mid %i ve \n",startVn,poly.vn,midEdgeCollapseCnt); } while(startVn>poly.vn); } /** * @brief SimplifyMidFace remove all the vertices that in the mid of a face * and between two of the points snapped onto the edges of the same face * @param poly * * It assumes that the mesh has been snapped and refined by the BaseMesh * */ void SimplifyMidFace(MeshType &poly) { int startVn= poly.vn;; int midFaceCollapseCnt=0; int vertexEdgeCollapseCnt=0; int curVn; do { tri::Allocator::CompactEveryVector(poly); curVn = poly.vn; UpdateTopology::VertexEdge(poly); for(int i =0; i starVecVp; edge::VVStarVE(&(poly.vert[i]),starVecVp); if( (starVecVp.size()==2) ) { CoordType ipP, ipN, ipI; FacePointer fpP = GetClosestFaceIP(starVecVp[0]->P(),ipP); FacePointer fpN = GetClosestFaceIP(starVecVp[1]->P(),ipN); FacePointer fpI = GetClosestFaceIP(poly.vert[i].P(), ipI); bool snapP = (BarycentricSnap(ipP)); bool snapN = (BarycentricSnap(ipN)); bool snapI = (BarycentricSnap(ipI)); VertexPointer vertexSnapP = 0; VertexPointer vertexSnapN = 0; VertexPointer vertexSnapI = 0; for(int j=0;j<3;++j) { if(ipP[j]==1.0) vertexSnapP=fpP->V(j); if(ipN[j]==1.0) vertexSnapN=fpN->V(j); if(ipI[j]==1.0) vertexSnapI=fpI->V(j); } bool collapseFlag=false; if((!snapI && snapP && snapN) || // First case a vertex that is not snapped between two snapped vertexes (!snapI && !snapP && fpI==fpP) || // Or a two vertex not snapped but on the same face (!snapI && !snapN && fpI==fpN) ) { collapseFlag=true; midFaceCollapseCnt++; } else // case 2) a vertex snap and edge snap we have to check that the edge do not share the same vertex of the vertex snap if(snapI && snapP && snapN && vertexSnapI==0 && (vertexSnapP!=0 || vertexSnapN!=0) ) { for(int j=0;j<3;++j) { if(ipI[j]!=0 && (fpI->V(j)==vertexSnapP || fpI->V(j)==vertexSnapN)) { collapseFlag=true; vertexEdgeCollapseCnt++; } } } if(collapseFlag) edge::VEEdgeCollapse(poly,&(poly.vert[i])); } } } while(curVn>poly.vn); printf("SimplifyMidFace %5i -> %5i %i mid %i ve \n",startVn,poly.vn,midFaceCollapseCnt,vertexEdgeCollapseCnt); } void Simplify(MeshType &poly) { int startEn = poly.en; Distribution hist; for(int i =0; i::VertexEdge(poly); for(int i =0; i starVecVp; edge::VVStarVE(&(poly.vert[i]),starVecVp); if ((starVecVp.size()==2) && (!poly.vert[i].IsS())) { ScalarType newSegLen = Distance(starVecVp[0]->P(), starVecVp[1]->P()); Segment3Type seg(starVecVp[0]->P(),starVecVp[1]->P()); ScalarType segDist; CoordType closestPSeg; SegmentPointDistance(seg,poly.vert[i].cP(),closestPSeg,segDist); CoordType fp,fn; ScalarType maxSurfDist = MaxSegDist(starVecVp[0], starVecVp[1],fp,fn); if((maxSurfDist < par.surfDistThr) && (newSegLen < par.maxSimpEdgeLen) ) { edge::VEEdgeCollapse(poly,&(poly.vert[i])); } } } tri::UpdateTopology::TestVertexEdge(poly); tri::Allocator::CompactEveryVector(poly); tri::UpdateTopology::TestVertexEdge(poly); printf("Simplify %5i -> %5i (total len %5.2f)\n",startEn,poly.en,hist.Sum()); } void EvaluateHausdorffDistance(MeshType &poly, Distribution &dist) { dist.Clear(); tri::UpdateTopology::VertexEdge(poly); tri::UpdateQuality::VertexConstant(poly,0); for(int i =0; iQ()+= maxDist; poly.edge[i].V(1)->Q()+= maxDist; } for(int i=0;i(&poly.vert[i]); poly.vert[i].Q()/=deg; } tri::UpdateColor::PerVertexQualityRamp(poly,0,dist.Max()); } /** * @brief BarycentricSnap * @param ip the baricentric coords to be snapped * @return true if they have been snapped. * * This is the VERY important function that is used everywhere. * Given a barycentric coord of a point inside a triangle it decides if it should be "snapped" either onto an edge or on a vertex. * It relies on the barycentricSnapThr parameter * */ bool BarycentricSnap(CoordType &ip) { for(int i=0;i<3;++i) { if(ip[i] <= par.barycentricSnapThr) ip[i]=0; if(ip[i] >= 1.0-par.barycentricSnapThr) ip[i]=1; } ScalarType sum = ip[0]+ip[1]+ip[2]; for(int i=0;i<3;++i) if(ip[i]!=1) ip[i]/=sum; if(ip[0]==0 || ip[1]==0 || ip[2]==0) return true; return false; } /** * @brief TestSplitSegWithMesh Given a poly segment decide if it should be split along elements of base mesh. * @param v0 * @param v1 * @param splitPt * @return true if it should be split * * We make a few samples onto the edge and if some of them snaps onto a an edge we use it. * In case there are more than one candidate we choose the sample closeset to its snapping point. * We explicitly avoid snapping twice on the same edge by checking the starting and ending edges. * * Two cases: * - poly edge pass near a vertex of the mesh * - poly edge cross one or more edges * * Note that we have to check the case where */ bool TestSplitSegWithMesh(VertexType *v0, VertexType *v1, CoordType &splitPt) { Segment3Type segPoly(v0->P(),v1->P()); const ScalarType sampleNum = 40; CoordType ip0,ip1; FaceType *f0=GetClosestFaceIP(v0->P(),ip0); FaceType *f1=GetClosestFaceIP(v1->P(),ip1); if(f0==f1) return false; bool snap0=false,snap1=false; // true if the segment start/end on a edge/vert Segment3Type seg0; // The two segments to be avoided Segment3Type seg1; // from which the current poly segment can start VertexPointer vertexSnap0 = 0; VertexPointer vertexSnap1 = 0; if(BarycentricSnap(ip0)) { snap0=true; for(int i=0;i<3;++i) { if(ip0[i]==1.0) vertexSnap0=f0->V(i); if(ip0[i]==0.0) seg0=Segment3Type(f0->P1(i),f0->P2(i)); } } if(BarycentricSnap(ip1)) { snap1=true; for(int i=0;i<3;++i){ if(ip1[i]==1.0) vertexSnap1=f1->V(i); if(ip1[i]==0.0) seg1=Segment3Type(f1->P1(i),f1->P2(i)); } } CoordType bestSplitPt(0,0,0); ScalarType bestDist = std::numeric_limits::max(); for(ScalarType k = 1;kV(i); CoordType closestPt = f->P(0)*ip[0]+f->P(1)*ip[1]+f->P(2)*ip[2]; if(Distance(samplePnt,closestPt) < bestDist ) { ScalarType dist0=std::numeric_limits::max(); ScalarType dist1=std::numeric_limits::max(); CoordType closestSegPt; if(snap0) SegmentPointDistance(seg0,closestPt,closestSegPt,dist0); if(snap1) SegmentPointDistance(seg1,closestPt,closestSegPt,dist1); if( (!vertexSnapI && (dist0 > par.surfDistThr/1000 && dist1>par.surfDistThr/1000) ) || ( vertexSnapI!=vertexSnap0 && vertexSnapI!=vertexSnap1) ) { bestDist = Distance(samplePnt,closestPt); bestSplitPt = closestPt; } } } } if(bestDist < par.surfDistThr*100) { splitPt = bestSplitPt; return true; } return false; } /** * @brief SnappedOnSameFace Return true if the two points are snapped to a common face; * @param f0 * @param i0 * @param f1 * @param i0 * @return * * Require FFAdj. se assume that both SNAPPED. Three cases: * - Edge Edge - true iff the two edges belongs to a common face. * - Vert Edge - true iff there is one of the two snapped edge faces has the vert as non-edge face; * - Vert Vert * */ bool SnappedOnSameFace(FacePointer f0, CoordType i0, FacePointer f1, CoordType i1) { if(f0==f1) return true; int e0,e1; int v0,v1; bool e0Snap = IsSnappedEdge(i0,e0); bool e1Snap = IsSnappedEdge(i1,e1); bool v0Snap = IsSnappedVertex(i0,v0); bool v1Snap = IsSnappedVertex(i1,v1); FacePointer f0p=0; int e0p=-1; // When Edge snap the other face and the index of the snapped edge on the other face FacePointer f1p=0; int e1p=-1; assert((e0Snap != v0Snap) && (e1Snap != v1Snap)); // For EdgeSnap compute the 'other' face stuff if(e0Snap){ f0p = f0->FFp(e0); e0p=f0->FFi(e0); assert(f0p->FFp(e0p)==f0); } if(e1Snap){ f1p = f1->FFp(e1); e1p=f1->FFi(e1); assert(f1p->FFp(e1p)==f1); } if(e0Snap && e1Snap) { if(f0==f1p || f0p==f1p || f0p==f1 || f0==f1) return true; } if(e0Snap && v1Snap) { assert(v1>=0 && v1<3 && v0==-1 && e1==-1); if(f0->V2(e0) ==f1->V(v1)) return true; if(f0p->V2(e0p)==f1->V(v1)) return true; } if(e1Snap && v0Snap) { assert(v0>=0 && v0<3 && v1==-1 && e0==-1); if(f1->V2(e1) ==f0->V(v0)) return true; if(f1p->V2(e1p)==f0->V(v0)) return true; } if(v1Snap && v0Snap) { PosType startPos(f0,f0->V(v0)); PosType curPos=startPos; do { assert(curPos.V()==f0->V(v0)); if(curPos.VFlip()==f1->V(v1)) return true; curPos.FlipE(); curPos.FlipF(); } while(curPos!=startPos); } return false; } /** * @brief TestSplitSegWithMesh Given a poly segment decide if it should be split along elements of base mesh. * @param v0 * @param v1 * @param splitPt * @return true if it should be split * * We make a few samples onto the edge and if some of them snaps onto a an edge we use it. * In case there are more than one candidate we choose the sample closeset to its snapping point. * We explicitly avoid snapping twice on the same edge by checking the starting and ending edges. * * Two cases: * - poly edge pass near a vertex of the mesh * - poly edge cross one or more edges * * Note that we have to check the case where */ bool TestSplitSegWithMeshAdapt(VertexType *v0, VertexType *v1, CoordType &splitPt) { splitPt=(v0->P()+v1->P())/2.0; CoordType ip0,ip1,ipm; FaceType *f0=GetClosestFaceIP(v0->P(),ip0); FaceType *f1=GetClosestFaceIP(v1->P(),ip1); FaceType *fm=GetClosestFaceIP(splitPt,ipm); if(f0==f1) return false; bool snap0=BarycentricSnap(ip0); bool snap1=BarycentricSnap(ip1); bool snapm=BarycentricSnap(ipm); splitPt = fm->P(0)*ipm[0]+fm->P(1)*ipm[1]+fm->P(2)*ipm[2]; if(!snap0 && !snap1) { assert(f0!=f1); return true; } if(snap0 && snap1) { if(SnappedOnSameFace(f0,ip0,f1,ip1)) return false; } if(snap0) { int e0,v0; if (IsSnappedEdge(ip0,e0)) { if(f0->FFp(e0) == f1) return false; } if(IsSnappedVertex(ip0,v0)) { for(int i=0;i<3;++i) if(f1->V(i)==f0->V(v0)) return false; } } if(snap1) { int e1,v1; if (IsSnappedEdge(ip1,e1)) { if(f1->FFp(e1) == f0) return false; } if(IsSnappedVertex(ip1,v1)) { for(int i=0;i<3;++i) if(f0->V(i)==f1->V(v1)) return false; } } return true; } bool TestSplitSegWithMeshAdaptOld(VertexType *v0, VertexType *v1, CoordType &splitPt) { Segment3Type segPoly(v0->P(),v1->P()); const ScalarType sampleNum = 40; CoordType ip0,ip1; FaceType *f0=GetClosestFaceIP(v0->P(),ip0); FaceType *f1=GetClosestFaceIP(v1->P(),ip1); if(f0==f1) return false; bool snap0=BarycentricSnap(ip0); bool snap1=BarycentricSnap(ip1); if(!snap0 && !snap1) { assert(f0!=f1); splitPt=(v0->P()+v1->P())/2.0; return true; } if(snap0 && snap1) { if(SnappedOnSameFace(f0,ip0,f1,ip1)) return false; } if(snap0) { int e0,v0; if (IsSnappedEdge(ip0,e0)) { if(f0->FFp(e0) == f1) return false; } if(IsSnappedVertex(ip0,v0)) { for(int i=0;i<3;++i) if(f1->V(i)==f0->V(v0)) return false; } } splitPt=(v0->P()+v1->P())/2.0; return true; } // Given a segment find the maximum distance from it to the original surface. // It is used to evaluate the Haustdorff distance of a Segment from the mesh. ScalarType MaxSegDist(VertexType *v0, VertexType *v1, CoordType &farthestPointOnSurf, CoordType &farthestN, Distribution *dist=0) { ScalarType maxSurfDist = 0; const ScalarType sampleNum = 10; const ScalarType maxDist = base.bbox.Diag()/10.0; for(ScalarType k = 1;kP()*k +v1->P()*(sampleNum-k))/sampleNum; FaceType *f = vcg::tri::GetClosestFaceBase(base,uniformGrid,samplePnt,maxDist, surfDist, closestPSurf); if(dist) dist->Add(surfDist); assert(f); if(surfDist > maxSurfDist) { maxSurfDist = surfDist; farthestPointOnSurf = closestPSurf; farthestN = f->N(); } } return maxSurfDist; } /** * @brief RefineCurve * @param poly the curve to be refined * @param uniformFlag * * Make one pass of refinement for all the edges of the curve that are distant from the basemesh * uses two parameters: * - par.minRefEdgeLen * - par.surfDistThr */ void RefineCurveByDistance(MeshType &poly) { tri::Allocator::CompactEveryVector(poly); int startEdgeSize = poly.en; for(int i =0; ipar.minRefEdgeLen) { CoordType farthestP, farthestN; ScalarType maxDist = MaxSegDist(ei.V(0),ei.V(1),farthestP, farthestN); if(maxDist > par.surfDistThr) { edge::VEEdgeSplit(poly, &ei, farthestP, farthestN); } } } // tri::Allocator::CompactEveryVector(poly); printf("Refine %i -> %i\n",startEdgeSize,poly.en);fflush(stdout); } /** * @brief RefineCurveByBaseMesh * @param poly */ void RefineCurveByBaseMesh(MeshType &poly) { tri::Allocator::CompactEveryVector(poly); std::vector edgeToRefineVec; for(int i=0; i edgeToRefineVecNext; for(int i=0; i::CompactEveryVector(poly); swap(edgeToRefineVecNext,edgeToRefineVec); printf("RefineCurveByBaseMesh %i en -> %i en\n",startEn,poly.en); fflush(stdout); } // SimplifyMidFace(poly); SimplifyMidEdge(poly); SnapPolyline(poly); printf("RefineCurveByBaseMesh %i en -> %i en\n",startEn,poly.en); fflush(stdout); } /** * @brief SmoothProject * @param poly * @param iterNum * @param smoothWeight [0..1] range; * @param projectWeight [0..1] range; * * The very important function to adapt a polyline onto the base mesh * The projection process must be done slowly to guarantee some empirical convergence... * For each iteration it choose a new position of each vertex of the polyline. * The new position is a blend between the smoothed position, the closest point on the surface and the original position. * You need a good balance... * after each iteration the polyline is refined and simplified. */ void SmoothProject(MeshType &poly, int iterNum, ScalarType smoothWeight, ScalarType projectWeight) { tri::RequireCompactness(poly); tri::UpdateTopology::VertexEdge(poly); printf("SmoothProject: Selected vert num %i\n",tri::UpdateSelection::VertexCount(poly)); assert(poly.en>0 && base.fn>0); for(int k=0;k posVec(poly.vn,CoordType(0,0,0)); std::vector cntVec(poly.vn,0); for(int i =0; iP(); cntVec[vertInd] += 1; } } const ScalarType maxDist = base.bbox.Diag()/10.0; for(int i=0; i par.maxSmoothDelta) // { // newP = poly.vert[i].P() + ( delta / delta.Norm()) * maxDist*0.5; // } ScalarType minDist; CoordType closestP; FaceType *f = vcg::tri::GetClosestFaceBase(base,uniformGrid,newP,maxDist, minDist, closestP); assert(f); poly.vert[i].P() = newP*(1.0-projectWeight) +closestP*projectWeight; poly.vert[i].N() = f->N(); } // Refine(poly); tri::UpdateTopology::TestVertexEdge(poly); RefineCurveByDistance(poly); tri::UpdateTopology::TestVertexEdge(poly); Simplify(poly); tri::UpdateTopology::TestVertexEdge(poly); int dupVertNum = Clean::RemoveDuplicateVertex(poly); if(dupVertNum) { printf("****REMOVED %i Duplicated\n",dupVertNum); tri::Allocator::CompactEveryVector(poly); tri::UpdateTopology::VertexEdge(poly); } } } class EdgePointPred { public: std::map, VertexPointer> &edgeToPolyVertMap; EdgePointPred(std::map, VertexPointer> &_edgeToPolyVertMap):edgeToPolyVertMap(_edgeToPolyVertMap){}; bool operator()(face::Pos ep) const { CoordType p0 = ep.V()->P(); CoordType p1 = ep.VFlip()->P(); if (p0>p1) std::swap(p0,p1); VertexPointer vp=edgeToPolyVertMap[make_pair(p0,p1)]; return vp!=0; } }; struct EdgePointSplit : public std::unary_function , CoordType> { public: std::map, VertexPointer> &edgeToPolyVertMap; EdgePointSplit(std::map, VertexPointer> &_edgeToPolyVertMap):edgeToPolyVertMap(_edgeToPolyVertMap){}; void operator()(VertexType &nv, face::Pos ep) { CoordType p0 = ep.V()->P(); CoordType p1 = ep.VFlip()->P(); if (p0>p1) std::swap(p0,p1); VertexPointer vp=edgeToPolyVertMap[make_pair(p0,p1)]; assert(vp); nv.P()=vp->P(); return; } Color4b WedgeInterp(Color4b &c0, Color4b &c1) { Color4b cc; cc.lerp(c0,c1,0.5f); return Color4b::Red; } TexCoord2f WedgeInterp(TexCoord2f &t0, TexCoord2f &t1) { TexCoord2f tmp; assert(t0.n()== t1.n()); tmp.n()=t0.n(); tmp.t()=(t0.t()+t1.t())/2.0; return tmp; } }; }; } // end namespace tri } // end namespace vcg #endif // __VCGLIB_CURVE_ON_SURF_H