/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2006 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_LIB_EXPORTER_SVG #define __VCG_LIB_EXPORTER_SVG namespace vcg { namespace edg { namespace io { /** * SVG Properties. * * Support class to set the properties of the SVG exporter. */ class SVGProperties { // definitions public: // When multiple meshes are passed, they are arranged in a grid according these two values. // the default is two column and enough row. If numRow is not sufficient it is automatically enlarged. int numCol; int numRow; Point2f sizeCm; // The size, in the drawing, of each ViewBox (in cm) Point2f marginCm; // how much space between each slice box (in cm) Point2f pageSizeCm() // This is automatically computed from the above values { float xSize = numCol*sizeCm[0] + numCol*marginCm[0] + marginCm[0]; float ySize = numRow*sizeCm[1] + numRow*marginCm[1] + marginCm[1]; return Point2f(xSize,ySize); } Point3f projDir; // Direction of the Projection Point3f projUp; Point3f projCenter; // the 3d point that after projection will fall exactly in the center of the ViewBox. // How the mesh will be scaled. // if this value is 0 the bounding box of all the passed meshes will be used to compute the scale and center // otherwise it is a scaling factor that is used to place the mesh in a unit cube (-1..1) // usually it is 2/bbox.Diag float scale; // SVG Style Parameters int lineWidthPt; // Line width. std::string strokeColor; // Stroke color (see StrokeColor). std::string strokeLineCap;// Stroke linecap (see StrokeLineCap). //Text details bool showTextDetails; public: SVGProperties() { lineWidthPt = 1; strokeColor = "black"; strokeLineCap = "round"; // default projection (XZ plane with the z up) projDir= Point3f(0.0, 1.0, 0.0); projUp = Point3f(0.0, 0.0, 1.0); scale=0; //viewBox=Point2f(10, 10); projCenter=Point3f(0, 0, 0); sizeCm=Point2f(10,10); marginCm=Point2f(1,1); showTextDetails=true; numCol=2; numRow=10; } }; /** * SVG exporter. * * This exporter save a mesh of EdgeMesh type in the SVG format. * Most of the features of the SVG format are not supported. * The given EdgeMesh is saved as a set lines. The properties * of the SVG export can be set through the SVGProp class. */ template class ExporterSVG { public: // Standard saving Function // just a wrapper to the below static bool Save(EdgeMeshType &m, const char *filename, SVGProperties & pro) { std::vector MeshVec; MeshVec.push_back(&m); return Save(MeshVec,filename,pro); } // Main saving function // save a Multiple Set of Edge Meshes on a single SVG files static bool Save(std::vector &meshVec, const char *filename, SVGProperties & pro) { FILE * fpo = fopen(filename,"w"); if (fpo==NULL) return false; WriteXmlHead(fpo, pro); for(size_t i=0;i"); fclose(fpo); return true; } static void WriteXmlHead(FILE *o, SVGProperties & pro) { fprintf(o, "\n"); fprintf(o, "\n"); fprintf(o, " \n"); fprintf(o, " \n"); fprintf(o, " \n"); fprintf(o, " \n"); fprintf(o, " \n"); fprintf(o, " image/svg+xml \n"); fprintf(o, " \n"); fprintf(o, " \n"); fprintf(o, " \n"); fprintf(o, " \n \n"); } static void WriteXmlBody(FILE* fpo, EdgeMeshType &mp, SVGProperties &pro, int meshIndex) { int rowInd = meshIndex / pro.numCol; int colInd = meshIndex % pro.numCol; fprintf(fpo, " \n", pro.sizeCm[0], pro.sizeCm[1], pro.marginCm[0]+colInd*(pro.sizeCm[0]+pro.marginCm[0]), pro.marginCm[1]+rowInd*(pro.sizeCm[1]+pro.marginCm[1])); fprintf(fpo, " \n", pro.strokeColor.c_str(), pro.strokeLineCap.c_str(),pro.lineWidthPt/100.0f); fprintf(fpo, " \n", meshIndex,pro.sizeCm[0],pro.sizeCm[1], pro.marginCm[0]+colInd*(pro.sizeCm[0]+pro.marginCm[0]), pro.marginCm[1]+rowInd*(pro.sizeCm[1]+pro.marginCm[1]) ); // Main loop of edge printing typename EdgeMeshType::EdgeIterator i; // XY projection. // It is a classcial ortho projection // eg it resolves to a rotation Matrix such that // - the passed projDir become the z axis // - the passed projUp lie on the upper YZ plane. // First Step align projDir to Z Matrix33f rotM = RotationMatrix(pro.projDir,Point3f(0,0,1),false); Point3f rotatedUp = rotM * pro.projUp; Point3f rotCenter = rotM * pro.projCenter; float scale = pro.scale; if(scale==0) scale = 2.0/mp.bbox.Diag(); for (i = mp.edges.begin(); i != mp.edges.end(); ++i) { Point3f p0 = (-rotCenter + rotM * ((*i).V(0)->P()))*scale*1000; Point3f p1 = (-rotCenter + rotM * ((*i).V(1)->P()))*scale*1000; fprintf(fpo, " \n", p0[0],p0[1],p1[0],p1[1]); } fprintf(fpo, " \n"); fprintf(fpo, "\n"); } }; }; // namespace io }; // namespace edge }; // namespace vcg #endif // __VCG_LIB_EXPORTER_SVG