/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.18 2004/05/28 13:01:50 ganovelli changed scalar to ScalarType Revision 1.17 2004/05/26 15:09:32 cignoni better comments in set rotate Revision 1.16 2004/05/07 10:05:50 cignoni Corrected abuse of for index variable scope Revision 1.15 2004/05/04 23:19:41 cignoni Clarified initial comment, removed vector*matrix operator (confusing!) Corrected translate and Rotate, removed gl stuff. Revision 1.14 2004/05/04 02:34:03 ganovelli wrong use of operator [] corrected Revision 1.13 2004/04/07 10:45:54 cignoni Added: [i][j] access, V() for the raw float values, constructor from T[16] Revision 1.12 2004/03/25 14:57:49 ponchio ****************************************************************************/ #ifndef __VCGLIB_MATRIX44 #define __VCGLIB_MATRIX44 #include #include #include #include namespace vcg { /* Annotations: Opengl stores matrix in column-major order. That is, the matrix is stored as: a0 a4 a8 a12 a1 a5 a9 a13 a2 a6 a10 a14 a3 a7 a11 a15 Usually in opengl (see opengl specs) vectors are 'column' vectors so usually matrix are PRE-multiplied for a vector. So the command glTranslate generate a matrix that is ready to be premultipled for a vector: 1 0 0 tx 0 1 0 ty 0 0 1 tz 0 0 0 1 Matrix44 stores matrix in row-major order i.e. a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 So for the use of that matrix in opengl with their supposed meaning you have to transpose them before feeding to glMultMatrix. This mechanism is hidden by the templated function defined in wrap/gl/math.h; If your machine has the ARB_transpose_matrix extension it will use the appropriate; The various gl-like command SetRotate, SetTranslate assume that you are making matrix for 'column' vectors. */ /** This class represent a 4x4 matrix. T is the kind of element in the matrix. */ template class Matrix44 { protected: T _a[16]; public: typedef T ScalarType; ///@{ /** $name Contrutors * No automatic casting and default constructor is empty */ Matrix44() {}; ~Matrix44() {}; Matrix44(const Matrix44 &m); Matrix44(const T v[]); T &element(const int row, const int col); T element(const int row, const int col) const; //T &operator[](const int i); //const T &operator[](const int i) const; T *V(); const T *V() const ; T *operator[](const int i); const T *operator[](const int i) const; // return a copy of the i-th column Point4 Column(const int& i)const{ assert(i >=0); assert(i<4); int first = i<<2; return Point4(_a[first],_a[first+1],_a[first+2],_a[first+3]); } // return the i-th row Point4 & Column4(const int& i)const{ assert(i >=0); assert(i<4); int first = i<<2; return Point4(_a[first],_a[first+4],_a[first+8],_a[first+12]); } // return a copy of the i-th row Point4 Row4(const int& i)const{ assert(i >=0); assert(i<4); return *((Point4*)(&_a[i<<2])); } Point3 Column3(const int& i)const{ assert(i >=0); assert(i<4); int first = i <<2; return Point3(_a[first],_a[first+4],_a[first+8]); } // return a copy of the i-th row Point3 Row3(const int& i)const{ assert(i >=0); assert(i<4); return *((Point3*)(&_a[i<<2])); } Matrix44 operator+(const Matrix44 &m) const; Matrix44 operator-(const Matrix44 &m) const; Matrix44 operator*(const Matrix44 &m) const; Point4 operator*(const Point4 &v) const; bool operator==(const Matrix44 &m) const; bool operator!= (const Matrix44 &m) const; Matrix44 operator-() const; Matrix44 operator*(const T k) const; void operator+=(const Matrix44 &m); void operator-=(const Matrix44 &m); void operator*=( const Matrix44 & m ); void operator*=( const T k ); void ToMatrix(Matrix44 & m) const {for(int i = 0; i < 16; i++) m.V()[i]=V()[i];} void FromMatrix(const Matrix44 & m){for(int i = 0; i < 16; i++) V()[i]=m.V()[i];} void SetZero(); void SetIdentity(); void SetDiagonal(const T k); Matrix44 &SetScale(const T sx, const T sy, const T sz); Matrix44 &SetTranslate(const Point3 &t); Matrix44 &SetTranslate(const T sx, const T sy, const T sz); ///use radiants for angle. Matrix44 &SetRotate(T AngleRad, const Point3 & axis); T Determinant() const; template void Import(const Matrix44 &m) { for(int i = 0; i < 16; i++) _a[i] = (T)(m.V()[i]); } }; /** Class for solving A * x = b. */ template class LinearSolve: public Matrix44 { public: LinearSolve(const Matrix44 &m); Point4 Solve(const Point4 &b); // solve A · x = b ///If you need to solve some equation you can use this function instead of Matrix44 one for speed. T Determinant() const; protected: ///Holds row permutation. int index[4]; //hold permutation ///Hold sign of row permutation (used for determinant sign) T d; bool Decompose(); }; /*** Postmultiply */ //template Point3 operator*(const Point3 &p, const Matrix44 &m); ///Premultiply template Point3 operator*(const Matrix44 &m, const Point3 &p); template Matrix44 &Transpose(Matrix44 &m); //return NULL matrix if not invertible template Matrix44 &Invert(Matrix44 &m); template Matrix44 Inverse(const Matrix44 &m); typedef Matrix44 Matrix44s; typedef Matrix44 Matrix44i; typedef Matrix44 Matrix44f; typedef Matrix44 Matrix44d; template Matrix44::Matrix44(const Matrix44 &m) { memcpy((T *)_a, (T *)m._a, 16 * sizeof(T)); } template Matrix44::Matrix44(const T v[]) { memcpy((T *)_a, v, 16 * sizeof(T)); } template T &Matrix44::element(const int row, const int col) { assert(row >= 0 && row < 4); assert(col >= 0 && col < 4); return _a[(row<<2) + col]; } template T Matrix44::element(const int row, const int col) const { assert(row >= 0 && row < 4); assert(col >= 0 && col < 4); return _a[(row<<2) + col]; } //template T &Matrix44::operator[](const int i) { // assert(i >= 0 && i < 16); // return ((T *)_a)[i]; //} // //template const T &Matrix44::operator[](const int i) const { // assert(i >= 0 && i < 16); // return ((T *)_a)[i]; //} template T *Matrix44::operator[](const int i) { assert(i >= 0 && i < 16); return _a+i*4; } template const T *Matrix44::operator[](const int i) const { assert(i >= 0 && i < 4); return _a+i*4; } template T *Matrix44::V() { return _a;} template const T *Matrix44::V() const { return _a;} template Matrix44 Matrix44::operator+(const Matrix44 &m) const { Matrix44 ret; for(int i = 0; i < 16; i++) ret[i] = V()[i] + m.V()[i]; } template Matrix44 Matrix44::operator-(const Matrix44 &m) const { Matrix44 ret; for(int i = 0; i < 16; i++) ret[i] = V()[i] - m.V()[i]; } template Matrix44 Matrix44::operator*(const Matrix44 &m) const { Matrix44 ret; for(int i = 0; i < 4; i++) for(int j = 0; j < 4; j++) { T t = 0.0; for(int k = 0; k < 4; k++) t += element(i, k) * m.element(k, j); ret.element(i, j) = t; } return ret; } template Point4 Matrix44::operator*(const Point4 &v) const { Point4 ret; for(int i = 0; i < 4; i++){ T t = 0.0; for(int k = 0; k < 4; k++) t += element(i,k) * v[k]; ret[i] = t; } return ret; } template bool Matrix44::operator==(const Matrix44 &m) const { for(int i = 0 ; i < 16; i++) if(operator[](i) != m[i]) return false; return true; } template bool Matrix44::operator!=(const Matrix44 &m) const { for(int i = 0 ; i < 16; i++) if(operator[](i) != m[i]) return true; return false; } template Matrix44 Matrix44::operator-() const { Matrix44 res; for(int i = 0; i < 16; i++) res.V()[i] = -V()[i]; return res; } template Matrix44 Matrix44::operator*(const T k) const { Matrix44 res; for(int i = 0; i < 16; i++) res.V()[i] =V()[i] * k; return res; } template void Matrix44::operator+=(const Matrix44 &m) { for(int i = 0; i < 16; i++) V()[i] += m.V()[i]; } template void Matrix44::operator-=(const Matrix44 &m) { for(int i = 0; i < 16; i++) V()[i] -= m.V()[i]; } template void Matrix44::operator*=( const Matrix44 & m ) { *this = *this *m; /*for(int i = 0; i < 4; i++) { //sbagliato Point4 t(0, 0, 0, 0); for(int k = 0; k < 4; k++) { for(int j = 0; j < 4; j++) { t[k] += element(i, k) * m.element(k, j); } } for(int l = 0; l < 4; l++) element(i, l) = t[l]; } */ } template void Matrix44::operator*=( const T k ) { for(int i = 0; i < 4; i++) operator[](i) *= k; } template void Matrix44::SetZero() { memset((T *)_a, 0, 16 * sizeof(T)); } template void Matrix44::SetIdentity() { SetDiagonal(1); } template void Matrix44::SetDiagonal(const T k) { SetZero(); element(0, 0) = k; element(1, 1) = k; element(2, 2) = k; element(3, 3) = 1; } template Matrix44 &Matrix44::SetScale(const T sx, const T sy, const T sz) { SetZero(); element(0, 0) = sx; element(1, 1) = sy; element(2, 2) = sz; element(3, 3) = 1; return *this; } template Matrix44 &Matrix44::SetTranslate(const Point3 &t) { SetTranslate(t[0], t[1], t[2]); return *this; } template Matrix44 &Matrix44::SetTranslate(const T sx, const T sy, const T sz) { SetIdentity(); element(0, 3) = sx; element(1, 3) = sy; element(2, 3) = sz; return *this; } template Matrix44 &Matrix44::SetRotate(T AngleRad, const Point3 & axis) { //angle = angle*(T)3.14159265358979323846/180; e' in radianti! T c = math::Cos(AngleRad); T s = math::Sin(AngleRad); T q = 1-c; Point3 t = axis; t.Normalize(); element(0,0) = t[0]*t[0]*q + c; element(0,1) = t[0]*t[1]*q - t[2]*s; element(0,2) = t[0]*t[2]*q + t[1]*s; element(0,3) = 0; element(1,0) = t[1]*t[0]*q + t[2]*s; element(1,1) = t[1]*t[1]*q + c; element(1,2) = t[1]*t[2]*q - t[0]*s; element(1,3) = 0; element(2,0) = t[2]*t[0]*q -t[1]*s; element(2,1) = t[2]*t[1]*q +t[0]*s; element(2,2) = t[2]*t[2]*q +c; element(2,3) = 0; element(3,0) = 0; element(3,1) = 0; element(3,2) = 0; element(3,3) = 1; return *this; } template T Matrix44::Determinant() const { LinearSolve solve(*this); return solve.Determinant(); } template Point3 operator*(const Matrix44 &m, const Point3 &p) { T w; Point3 s; s[0] = m.element(0, 0)*p[0] + m.element(0, 1)*p[1] + m.element(0, 2)*p[2] + m.element(0, 3); s[1] = m.element(1, 0)*p[0] + m.element(1, 1)*p[1] + m.element(1, 2)*p[2] + m.element(1, 3); s[2] = m.element(2, 0)*p[0] + m.element(2, 1)*p[1] + m.element(2, 2)*p[2] + m.element(2, 3); w = m.element(3, 0)*p[0] + m.element(3, 1)*p[1] + m.element(3, 2)*p[2] + m.element(3, 3); if(w!= 0) s /= w; return s; } //template Point3 operator*(const Point3 &p, const Matrix44 &m) { // T w; // Point3 s; // s[0] = m.element(0, 0)*p[0] + m.element(1, 0)*p[1] + m.element(2, 0)*p[2] + m.element(3, 0); // s[1] = m.element(0, 1)*p[0] + m.element(1, 1)*p[1] + m.element(2, 1)*p[2] + m.element(3, 1); // s[2] = m.element(0, 2)*p[0] + m.element(1, 2)*p[1] + m.element(2, 2)*p[2] + m.element(3, 2); // w = m.element(0, 3)*p[0] + m.element(1, 3)*p[1] + m.element(2, 3)*p[2] + m.element(3, 3); // if(w != 0) s /= w; // return s; //} template Matrix44 &Transpose(Matrix44 &m) { for(int i = 1; i < 4; i++) for(int j = 0; j < i; j++) { T t = m.element(i, j); m.element(i, j) = m.element(j, i); m.element(j, i) = t; } return m; } template Matrix44 &Invert(Matrix44 &m) { LinearSolve solve(m); for(int j = 0; j < 4; j++) { //Find inverse by columns. Point4 col(0, 0, 0, 0); col[j] = 1.0; col = solve.Solve(col); for(int i = 0; i < 4; i++) m.element(i, j) = col[i]; } return m; } template Matrix44 Inverse(const Matrix44 &m) { LinearSolve solve(m); Matrix44 res; for(int j = 0; j < 4; j++) { //Find inverse by columns. Point4 col(0, 0, 0, 0); col[j] = 1.0; col = solve.Solve(col); for(int i = 0; i < 4; i++) res.element(i, j) = col[i]; } return res; } /* LINEAR SOLVE IMPLEMENTATION */ template LinearSolve::LinearSolve(const Matrix44 &m): Matrix44(m) { if(!Decompose()) { for(int i = 0; i < 4; i++) index[i] = i; SetZero(); } } template T LinearSolve::Determinant() const { T det = d; for(int j = 0; j < 4; j++) det *= element(j, j); return det; } /*replaces a matrix by its LU decomposition of a rowwise permutation. d is +or -1 depeneing of row permutation even or odd.*/ #define TINY 1e-100 template bool LinearSolve::Decompose() { /* Matrix44 A; for(int i = 0; i < 16; i++) A[i] = operator[](i); SetIdentity(); Point4 scale; // Set scale factor, scale(i) = max( |a(i,j)| ), for each row for(int i = 0; i < 4; i++ ) { index[i] = i; // Initialize row index list T scalemax = (T)0.0; for(int j = 0; j < 4; j++) scalemax = (scalemax > math::Abs(A.element(i,j))) ? scalemax : math::Abs(A.element(i,j)); scale[i] = scalemax; } // Loop over rows k = 1, ..., (N-1) int signDet = 1; for(int k = 0; k < 3; k++ ) { // Select pivot row from max( |a(j,k)/s(j)| ) T ratiomax = (T)0.0; int jPivot = k; for(int i = k; i < 4; i++ ) { T ratio = math::Abs(A.element(index[i], k))/scale[index[i]]; if(ratio > ratiomax) { jPivot = i; ratiomax = ratio; } } // Perform pivoting using row index list int indexJ = index[k]; if( jPivot != k ) { // Pivot indexJ = index[jPivot]; index[jPivot] = index[k]; // Swap index jPivot and k index[k] = indexJ; signDet *= -1; // Flip sign of determinant } // Perform forward elimination for(int i=k+1; i < 4; i++ ) { T coeff = A.element(index[i],k)/A.element(indexJ,k); for(int j=k+1; j < 4; j++ ) A.element(index[i],j) -= coeff*A.element(indexJ,j); A.element(index[i],k) = coeff; //for( j=1; j< 4; j++ ) // element(index[i],j) -= A.element(index[i], k)*element(indexJ, j); } } for(int i = 0; i < 16; i++) operator[](i) = A[i]; d = signDet; // this = A; return true; */ d = 1; //no permutation still T scaling[4]; int i,j,k; //Saving the scvaling information per row for(i = 0; i < 4; i++) { T largest = 0.0; for(j = 0; j < 4; j++) { T t = math::Abs(element(i, j)); if (t > largest) largest = t; } if (largest == 0.0) { //oooppps there is a zero row! return false; } scaling[i] = (T)1.0 / largest; } int imax; for(j = 0; j < 4; j++) { for(i = 0; i < j; i++) { T sum = element(i,j); for(int k = 0; k < i; k++) sum -= element(i,k)*element(k,j); element(i,j) = sum; } T largest = 0.0; for(i = j; i < 4; i++) { T sum = element(i,j); for(k = 0; k < j; k++) sum -= element(i,k)*element(k,j); element(i,j) = sum; T t = scaling[i] * math::Abs(sum); if(t >= largest) { largest = t; imax = i; } } if (j != imax) { for (int k = 0; k < 4; k++) { T dum = element(imax,k); element(imax,k) = element(j,k); element(j,k) = dum; } d = -(d); scaling[imax] = scaling[j]; } index[j]=imax; if (element(j,j) == 0.0) element(j,j) = (T)TINY; if (j != 3) { T dum = (T)1.0 / (element(j,j)); for (i = j+1; i < 4; i++) element(i,j) *= dum; } } return true; } template Point4 LinearSolve::Solve(const Point4 &b) { Point4 x(b); int first = -1, ip; for(int i = 0; i < 4; i++) { ip = index[i]; T sum = x[ip]; x[ip] = x[i]; if(first!= -1) for(int j = first; j <= i-1; j++) sum -= element(i,j) * x[j]; else if(sum) first = i; x[i] = sum; } for (int i = 3; i >= 0; i--) { T sum = x[i]; for (int j = i+1; j < 4; j++) sum -= element(i, j) * x[j]; x[i] = sum / element(i, i); } return x; } } //namespace #endif