/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.4 2004/04/29 10:47:06 ganovelli some siyntax error corrected Revision 1.3 2004/04/05 12:36:43 tarini unified version: PointBase version, with no guards "(N==3)" Revision 1.1 2004/03/16 03:07:38 tarini "dimensionally unified" version: first commit ****************************************************************************/ #ifndef __VCGLIB_POINT #define __VCGLIB_POINT #include #include #include namespace vcg { template class Point; /** \addtogroup space */ /*@{*/ /** The templated class for representing a point in R^N space. The class is templated over the ScalarType class that is used to represent coordinates. PointBase provides the interface and the common operators for points of any dimensionality. */ template class PointBase { public: typedef S ScalarType; typedef VoidType ParamType; typedef Point PointType; enum {Dimension=N}; protected: /// The only data member. Hidden to user. S _v[N]; public: //@{ /** @name Standard Constructors and Initializers No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different PointType types **/ inline PointBase () { }; // inline PointBase ( const S nv[N] ); /// Padding function: give a default 0 value to all the elements that are not in the [0..2] range. /// Useful for managing in a consistent way object that could have point2 / point3 / point4 inline S Ext( const int i ) const { if(i>=0 && i<=N) return _v[i]; else return 0; } /// importer for points with different scalar type and-or dimensionality template inline void Import( const Point & b ) { _v[0] = ScalarType(b[0]); _v[1] = ScalarType(b[1]); if (N>2) { if (N2>2) _v[2] = ScalarType(b[2]); else _v[2] = 0;}; if (N>3) { if (N2>3) _v[3] = ScalarType(b[3]); else _v[3] = 0;}; } /// constructor for points with different scalar type and-or dimensionality template static inline PointType Construct( const Point & b ) { PointType p; p.Import(b); return p; } /// importer for homogeneous points template inline void ImportHomo( const Point & b ) { _v[0] = ScalarType(b[0]); _v[1] = ScalarType(b[1]); if (N>2) { _v[2] = ScalarType(_v[2]); }; _v[N-1] = 1.0; } /// constructor for homogeneus point. template static inline PointType Construct( const Point & b ) { PointType p; p.ImportHomo(b); return p; } //@} //@{ /** @name Data Access. access to data is done by overloading of [] or explicit naming of coords (x,y,z)**/ inline S & operator [] ( const int i ) { assert(i>=0 && i=0 && i2); return _v[2]; } /// W is in any case the last coordinate. /// (in a 2D point, W() == Y(). In a 3D point, W()==Z() /// in a 4D point, W() is a separate component) inline const S &W() const { return _v[N-1]; } inline S &X() { return _v[0]; } inline S &Y() { return _v[1]; } inline S &Z() { static_assert(N>2); return _v[2]; } inline S &W() { return _v[N-1]; } inline const S * V() const { return _v; } inline S & V( const int i ) { assert(i>=0 && i=0 && i static S Norm(const PT &p ); /// Squared Euclidean norm inline S SquaredNorm() const; /// Squared Euclidean norm, static version template static S SquaredNorm(const PT &p ); /// Normalization (division by norm) inline PointType & Normalize(); /// Normalization (division by norm), static version template static PointType & Normalize(const PT &p); /// Homogeneous normalization (division by W) inline PointType & HomoNormalize(); /// norm infinity: largest absolute value of compoenet inline S NormInfinity() const; /// norm 1: sum of absolute values of components inline S NormOne() const; //@} /// Signed area operator /// a % b returns the signed area of the parallelogram inside a and b inline S operator % ( PointType const & p ) const; /// the sum of the components inline S Sum() const; /// returns the biggest component inline S Max() const; /// returns the smallest component inline S Min() const; /// returns the index of the biggest component inline int MaxI() const; /// returns the index of the smallest component inline int MinI() const; /// Per component scaling inline PointType & Scale( const PointType & p ); /// Convert to polar coordinates void ToPolar( S & ro, S & tetha, S & fi ) const { ro = Norm(); tetha = (S)atan2( _v[1], _v[0] ); fi = (S)acos( _v[2]/ro ); } //@{ /** @name Comparison Operators. Lexicographic order. **/ inline bool operator == ( PointType const & p ) const; inline bool operator != ( PointType const & p ) const; inline bool operator < ( PointType const & p ) const; inline bool operator > ( PointType const & p ) const; inline bool operator <= ( PointType const & p ) const; inline bool operator >= ( PointType const & p ) const; //@} //@{ /** @name Glocal to Local and viceversa (provided for uniformity with other spatial classes. trivial for points) **/ inline PointType LocalToGlobal(ParamType p) const{ return *this; } inline ParamType GlobalToLocal(PointType p) const{ ParamType p(); return p; } //@} }; // end class definition template class Point<2, S> : public PointBase<2,S> { public: typedef S ScalarType; typedef Point<2,S> PointType; //@{ /** @name Special members for 2D points. **/ /// default inline Point (){} /// yx constructor inline Point ( const S a, const S b){ _v[0]=a; _v[1]=b; }; /// unary orthogonal operator (2D equivalent of cross product) /// returns orthogonal vector (90 deg left) inline Point operator ~ () const { return Point ( -_v[2], _v[1] ); } /// returns the angle with X axis (radiants, in [-PI, +PI] ) inline ScalarType &Angle(){ return math::Atan2(_v[1],_v[0]);} /// transform the point in cartesian coords into polar coords inline Point & ToPolar(){ ScalarType t = Angle(); _v[0] = Norm(); _v[1] = t; return *this;} /// transform the point in polar coords into cartesian coords inline Point & ToCartesian() { ScalarType l = _v[0]; _v[0] = (ScalarType)(l*math::Cos(_v[1])); _v[1] = (ScalarType)(l*math::Sin(_v[1])); return *this;} /// rotates the point of an angle (radiants, counterclockwise) inline Point & Rotate( const ScalarType rad ){ ScalarType t = _v[0]; ScalarType s = math::Sin(rad); ScalarType c = math::Cos(rad); _v[0] = _v[0]*c - _v[1]*s; _v[1] = t *s + _v[1]*c; return *this;} //@} //@{ /** @name Implementation of standard functions for 3D points **/ inline void Zero(){ _v[0]=0; _v[1]=0; }; inline Point ( const S nv[2] ){ _v[0]=nv[0]; _v[1]=nv[1]; }; inline Point operator + ( Point const & p) const { return Point( _v[0]+p._v[0], _v[1]+p._v[1]); } inline Point operator - ( Point const & p) const { return Point( _v[0]-p._v[0], _v[1]-p._v[1]); } inline Point operator * ( const S s ) const { return Point( _v[0]*s, _v[1]*s ); } inline Point operator / ( const S s ) const { S t=1.0/s; return Point( _v[0]*t, _v[1]*t ); } inline Point operator - () const { return Point ( -_v[0], -_v[1] ); } inline Point & operator += ( Point const & p ) { _v[0] += p._v[0]; _v[1] += p._v[1]; return *this; } inline Point & operator -= ( Point const & p ) { _v[0] -= p._v[0]; _v[1] -= p._v[1]; return *this; } inline Point & operator *= ( const S s ) { _v[0] *= s; _v[1] *= s; return *this; } inline Point & operator /= ( const S s ) { S t=1.0/s; _v[0] *= t; _v[1] *= t; return *this; } inline S Norm() const { return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] );} template static S Norm(const PT &p ) { return math::Sqrt( p.V(0)*p.V(0) + p.V(1)*p.V(1) );} inline S SquaredNorm() const { return ( _v[0]*_v[0] + _v[1]*_v[1] );} template static S SquaredNorm(const PT &p ) { return ( p.V(0)*p.V(0) + p.V(1)*p.V(1) );} inline S operator * ( Point const & p ) const { return ( _v[0]*p._v[0] + _v[1]*p._v[1]) ; } inline bool operator == ( Point const & p ) const { return _v[0]==p._v[0] && _v[1]==p._v[1] ;} inline bool operator != ( Point const & p ) const { return _v[0]!=p._v[0] || _v[1]!=p._v[1] ;} inline bool operator < ( Point const & p ) const{ return (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0] ( Point const & p ) const { return (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>p._v[0]); } inline bool operator <= ( Point const & p ) { return (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<=p._v[0]); } inline bool operator >= ( Point const & p ) const { return (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); } inline Point & Normalize() { PointType n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n;} return *this;}; template Point & Normalize(const PT &p){ PointType n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; } return *this;}; inline Point & HomoNormalize(){ if (_v[2]!=0.0) { _v[0] /= W(); W()=1.0; } return *this;}; inline S NormInfinity() const { return math::Max( math::Abs(_v[0]), math::Abs(_v[1]) ); } inline S NormOne() const { return math::Abs(_v[0])+ math::Abs(_v[1]);} inline S operator % ( Point const & p ) const { return _v[0] * p._v[1] - _v[1] * p._v[0]; } inline S Sum() const { return _v[0]+_v[1];} inline S Max() const { return math::Max( _v[0], _v[1] ); } inline S Min() const { return math::Min( _v[0], _v[1] ); } inline int MaxI() const { return (_v[0] < _v[1]) ? 1:0; }; inline int MinI() const { return (_v[0] > _v[1]) ? 1:0; }; inline PointType & Scale( const PointType & p ) { _v[0] *= p._v[0]; _v[1] *= p._v[1]; return *this; } inline S StableDot ( const PointType & p ) const { return _v[0]*p._v[0] +_v[1]*p._v[1]; } //@} }; template class Point<3,S> : public PointBase<3,S> { public: typedef S ScalarType; typedef Point<3,S> PointType; //@{ /** @name Special members for 3D points. **/ /// default inline Point ():PointBase<3,S>(){} /// yxz constructor inline Point ( const S a, const S b, const S c){ _v[0]=a; _v[1]=b; _v[2]=c; }; /// Cross product for 3D points inline PointType operator ^ ( PointType const & p ) const { return Point ( _v[1]*p._v[2] - _v[2]*p._v[1], _v[2]*p._v[0] - _v[0]*p._v[2], _v[0]*p._v[1] - _v[1]*p._v[0] ); } //@} //@{ /** @name Implementation of standard functions for 3D points **/ inline void Zero(){ _v[0]=0; _v[1]=0; _v[2]=0; }; inline Point ( const S nv[3] ){ _v[0]=nv[0]; _v[1]=nv[1]; _v[2]=nv[2]; }; inline Point operator + ( Point const & p) const{ return Point( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2]); } inline Point operator - ( Point const & p) const { return Point( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2]); } inline Point operator * ( const S s ) const { return Point( _v[0]*s, _v[1]*s , _v[2]*s ); } inline Point operator / ( const S s ) const { S t=1.0/s; return Point( _v[0]*t, _v[1]*t , _v[2]*t ); } inline Point operator - () const { return Point ( -_v[0], -_v[1] , -_v[2] ); } inline Point & operator += ( Point const & p ) { _v[0] += p._v[0]; _v[1] += p._v[1]; _v[2] += p._v[2]; return *this; } inline Point & operator -= ( Point const & p ) { _v[0] -= p._v[0]; _v[1] -= p._v[1]; _v[2] -= p._v[2]; return *this; } inline Point & operator *= ( const S s ) { _v[0] *= s; _v[1] *= s; _v[2] *= s; return *this; } inline Point & operator /= ( const S s ) { S t=1.0/s; _v[0] *= t; _v[1] *= t; _v[2] *= t; return *this; } inline S Norm() const { return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );} template static S Norm(const PT &p ) { return math::Sqrt( p.V(0)*p.V(0) + p.V(1)*p.V(1) + p.V(2)*p.V(2) );} inline S SquaredNorm() const { return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );} template static S SquaredNorm(const PT &p ) { return ( p.V(0)*p.V(0) + p.V(1)*p.V(1) + p.V(2)*p.V(2) );} inline S operator * ( PointType const & p ) const { return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2]) ; } inline bool operator == ( PointType const & p ) const { return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2] ;} inline bool operator != ( PointType const & p ) const { return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2] ;} inline bool operator < ( PointType const & p ) const{ return (_v[2]!=p._v[2])?(_v[2]< p._v[2]): (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0] ( PointType const & p ) const { return (_v[2]!=p._v[2])?(_v[2]> p._v[2]): (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>p._v[0]); } inline bool operator <= ( PointType const & p ) { return (_v[2]!=p._v[2])?(_v[2]< p._v[2]): (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<=p._v[0]); } inline bool operator >= ( PointType const & p ) const { return (_v[2]!=p._v[2])?(_v[2]> p._v[2]): (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); } inline PointType & Normalize() { S n = Norm(); if(n!=0.0) { n=S(1.0)/n; _v[0]*=n; _v[1]*=n; _v[2]*=n; } return *this;}; template PointType & Normalize(const PT &p){ S n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; V(2)*=n; } return *this;}; inline PointType & HomoNormalize(){ if (_v[2]!=0.0) { _v[0] /= W(); _v[1] /= W(); W()=1.0; } return *this;}; inline S NormInfinity() const { return math::Max( math::Max( math::Abs(_v[0]), math::Abs(_v[1]) ), math::Abs(_v[3]) ); } inline S NormOne() const { return math::Abs(_v[0])+ math::Abs(_v[1])+math::Max(math::Abs(_v[2]));} inline S operator % ( PointType const & p ) const { S t = (*this)*p; /* Area, general formula */ return math::Sqrt( SquaredNorm() * p.SquaredNorm() - (t*t) );}; inline S Sum() const { return _v[0]+_v[1]+_v[2];} inline S Max() const { return math::Max( math::Max( _v[0], _v[1] ), _v[2] ); } inline S Min() const { return math::Min( math::Min( _v[0], _v[1] ), _v[2] ); } inline int MaxI() const { int i= (_v[0] < _v[1]) ? 1:0; if (_v[i] < _v[2]) i=2; return i;}; inline int MinI() const { int i= (_v[0] > _v[1]) ? 1:0; if (_v[i] > _v[2]) i=2; return i;}; inline PointType & Scale( const PointType & p ) { _v[0] *= p._v[0]; _v[1] *= p._v[1]; _v[2] *= p._v[2]; return *this; } inline S StableDot ( const PointType & p ) const { PointType k0(_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2]); int exp0,exp1,exp2; frexp( double(k0), &exp0 ); frexp( double(k1), &exp1 ); frexp( double(k2), &exp2 ); if( exp0 class Point<4, S> : public PointBase<4,S> { public: typedef S ScalarType; typedef Point<4,S> PointType; //@{ /** @name Special members for 4D points. **/ /// default inline Point (){} /// xyzw constructor //@} inline Point ( const S a, const S b, const S c, const S d){ _v[0]=a; _v[1]=b; _v[2]=c; _v[3]=d; }; //@{ /** @name Implementation of standard functions for 3D points **/ inline void Zero(){ _v[0]=0; _v[1]=0; _v[2]=0; _v[3]=0; }; inline Point ( const S nv[4] ){ _v[0]=nv[0]; _v[1]=nv[1]; _v[2]=nv[2]; _v[3]=nv[3]; }; inline Point operator + ( Point const & p) const { return Point( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2], _v[3]+p._v[3] ); } inline Point operator - ( Point const & p) const { return Point( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2], _v[3]-p._v[3] ); } inline Point operator * ( const S s ) const { return Point( _v[0]*s, _v[1]*s , _v[2]*s , _v[3]*s ); } inline PointType operator ^ ( PointType const & p ) const { assert(0); return *this; } inline Point operator / ( const S s ) const { S t=1.0/s; return Point( _v[0]*t, _v[1]*t , _v[2]*t , _v[3]*t ); } inline Point operator - () const { return Point ( -_v[0], -_v[1] , -_v[2] , -_v[3] ); } inline Point & operator += ( Point const & p ) { _v[0] += p._v[0]; _v[1] += p._v[1]; _v[2] += p._v[2]; _v[3] += p._v[3]; return *this; } inline Point & operator -= ( Point const & p ) { _v[0] -= p._v[0]; _v[1] -= p._v[1]; _v[2] -= p._v[2]; _v[3] -= p._v[3]; return *this; } inline Point & operator *= ( const S s ) { _v[0] *= s; _v[1] *= s; _v[2] *= s; _v[3] *= s; return *this; } inline Point & operator /= ( const S s ) { S t=1.0/s; _v[0] *= t; _v[1] *= t; _v[2] *= t; _v[3] *= t; return *this; } inline S Norm() const { return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] );} template static S Norm(const PT &p ) { return math::Sqrt( p.V(0)*p.V(0) + p.V(1)*p.V(1) + p.V(2)*p.V(2) + p.V(3)*p.V(3) );} inline S SquaredNorm() const { return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] );} template static S SquaredNorm(const PT &p ) { return ( p.V(0)*p.V(0) + p.V(1)*p.V(1) + p.V(2)*p.V(2) + p.V(3)*p.V(3) );} inline S operator * ( PointType const & p ) const { return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] + _v[3]*p._v[3] ); } inline bool operator == ( PointType const & p ) const { return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2] && _v[3]==p._v[3];} inline bool operator != ( PointType const & p ) const { return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2] || _v[3]!=p._v[3];} inline bool operator < ( PointType const & p ) const{ return (_v[3]!=p._v[3])?(_v[3]< p._v[3]) : (_v[2]!=p._v[2])?(_v[2]< p._v[2]): (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0] ( PointType const & p ) const { return (_v[3]!=p._v[3])?(_v[3]> p._v[3]) : (_v[2]!=p._v[2])?(_v[2]> p._v[2]): (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>p._v[0]); } inline bool operator <= ( PointType const & p ) { return (_v[3]!=p._v[3])?(_v[3]< p._v[3]) : (_v[2]!=p._v[2])?(_v[2]< p._v[2]): (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<=p._v[0]); } inline bool operator >= ( PointType const & p ) const { return (_v[3]!=p._v[3])?(_v[3]> p._v[3]) : (_v[2]!=p._v[2])?(_v[2]> p._v[2]): (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); } inline PointType & Normalize() { PointType n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n; _v[2]*=n; _v[3]*=n; } return *this;}; template PointType & Normalize(const PT &p){ PointType n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; V(2)*=n; V(3)*=n; } return *this;}; inline PointType & HomoNormalize(){ if (_v[3]!=0.0) { _v[0] /= W(); _v[1] /= W(); _v[2] /= W(); W()=1.0; } return *this;}; inline S NormInfinity() const { return math::Max( math::Max( math::Abs(_v[0]), math::Abs(_v[1]) ), math::Max( math::Abs(_v[2]), math::Abs(_v[3]) ) ); } inline S NormOne() const { return math::Abs(_v[0])+ math::Abs(_v[1])+math::Max(math::Abs(_v[2]),math::Abs(_v[3]));} inline S operator % ( PointType const & p ) const { S t = (*this)*p; /* Area, general formula */ return math::Sqrt( SquaredNorm() * p.SquaredNorm() - (t*t) );}; inline S Sum() const { return _v[0]+_v[1]+_v[2]+_v[3];} inline S Max() const { return math::Max( math::Max( _v[0], _v[1] ), math::Max( _v[2], _v[3] )); } inline S Min() const { return math::Min( math::Min( _v[0], _v[1] ), math::Min( _v[2], _v[3] )); } inline int MaxI() const { int i= (_v[0] < _v[1]) ? 1:0; if (_v[i] < _v[2]) i=2; if (_v[i] < _v[3]) i=3; return i;}; inline int MinI() const { int i= (_v[0] > _v[1]) ? 1:0; if (_v[i] > _v[2]) i=2; if (_v[i] > _v[3]) i=3; return i;}; inline PointType & Scale( const PointType & p ) { _v[0] *= p._v[0]; _v[1] *= p._v[1]; _v[2] *= p._v[2]; _v[3] *= p._v[3]; return *this; } inline S StableDot ( const PointType & p ) const { S k0=_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2], k3=_v[3]*p._v[3]; int exp0,exp1,exp2,exp3; frexp( double(k0), &exp0 );frexp( double(k1), &exp1 ); frexp( double(k2), &exp2 );frexp( double(k3), &exp3 ); if (exp0>exp1) { math::Swap(k0,k1); math::Swap(exp0,exp1); } if (exp2>exp3) { math::Swap(k2,k3); math::Swap(exp2,exp3); } if (exp0>exp2) { math::Swap(k0,k2); math::Swap(exp0,exp2); } if (exp1>exp3) { math::Swap(k1,k3); math::Swap(exp1,exp3); } if (exp2>exp3) { math::Swap(k2,k3); math::Swap(exp2,exp3); } return ( (k0 + k1) + k2 ) +k3; } //@} }; template inline S Angle( Point<3,S> const & p1, Point<3,S> const & p2 ) { S w = p1.Norm()*p2.Norm(); if(w==0) return -1; S t = (p1*p2)/w; if(t>1) t = 1; else if(t<-1) t = -1; return (S) acos(t); } // versione uguale alla precedente ma che assume che i due vettori siano unitari template inline S AngleN( Point<3,S> const & p1, Point<3,S> const & p2 ) { S w = p1*p2; if(w>1) w = 1; else if(w<-1) w=-1; return (S) acos(w); } template inline S Norm( Point const & p ) { return p.Norm(); } template inline S SquaredNorm( Point const & p ) { return p.SquaredNorm(); } template inline Point & Normalize( Point & p ) { p.Normalize(); return p; } template inline S Distance( Point const & p1,Point const & p2 ) { return (p1-p2).Norm(); } template inline S SquaredDistance( Point const & p1,Point const & p2 ) { return (p1-p2).SquaredNorm(); } template struct Point2:public Point<2,S>{ inline Point2(){}; inline Point2(Point<2,S> const & p):Point<2,S>(p){} ; inline Point2( const S a, const S b):Point<2,S>(a,b){}; }; template struct Point3:public Point<3,S> { inline Point3(){}; inline Point3(Point<3,S> const & p):Point<3,S> (p){} inline Point3( const S a, const S b, const S c):Point<3,S> (a,b,c){}; }; template struct Point4:public Point<4,S>{ inline Point4(){}; inline Point4(Point<4,S> const & p):Point<4,S>(p){} inline Point4( const S a, const S b, const S c, const S d):Point<4,S>(a,b,c,d){}; }; typedef Point2 Point2s; typedef Point2 Point2i; typedef Point2 Point2f; typedef Point2 Point2d; typedef Point2 Vector2s; typedef Point2 Vector2i; typedef Point2 Vector2f; typedef Point2 Vector2d; typedef Point3 Point3s; typedef Point3 Point3i; typedef Point3 Point3f; typedef Point3 Point3d; typedef Point3 Vector3s; typedef Point3 Vector3i; typedef Point3 Vector3f; typedef Point3 Vector3d; typedef Point4 Point4s; typedef Point4 Point4i; typedef Point4 Point4f; typedef Point4 Point4d; typedef Point4 Vector4s; typedef Point4 Vector4i; typedef Point4 Vector4f; typedef Point4 Vector4d; /*@}*/ } // end namespace #endif