/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.7 2005/10/15 19:11:49 m_di_benedetto Corrected return type in Angle() and protected member access in unary operator - Revision 1.6 2005/03/18 16:34:42 fiorin minor changes to comply gcc compiler Revision 1.5 2004/05/10 13:22:25 cignoni small syntax error Math -> math in Angle Revision 1.4 2004/04/05 11:57:32 cignoni Add V() access function Revision 1.3 2004/03/10 17:42:40 tarini Added comments (Dox) ! Added Import(). Costruct(), ScalarType... Corrected cross prod (sign). Added Angle. Now using Math:: stuff for trigon. etc. Revision 1.2 2004/03/03 15:07:40 cignoni renamed protected member v -> _v Revision 1.1 2004/02/13 00:44:53 cignoni First commit... ****************************************************************************/ #ifndef __VCGLIB_POINT2 #define __VCGLIB_POINT2 #include #include namespace vcg { /** \addtogroup space */ /*@{*/ /** The templated class for representing a point in 2D space. The class is templated over the ScalarType class that is used to represent coordinates. All the usual operator overloading (* + - ...) is present. */ template class Point2 { protected: /// The only data member. Hidden to user. P2ScalarType _v[2]; public: /// the scalar type typedef P2ScalarType ScalarType; //@{ /** @name Access to Coords. access to coords is done by overloading of [] or explicit naming of coords (X,Y,) ("p[0]" or "p.X()" are equivalent) **/ inline const ScalarType &X() const {return _v[0];} inline const ScalarType &Y() const {return _v[1];} inline ScalarType &X() {return _v[0];} inline ScalarType &Y() {return _v[1];} inline const ScalarType * V() const { return _v; } inline ScalarType & V( const int i ) { assert(i>=0 && i<2); return _v[i]; } inline const ScalarType & V( const int i ) const { assert(i>=0 && i<2); return _v[i]; } inline const ScalarType & operator [] ( const int i ) const { assert(i>=0 && i<2); return _v[i]; } inline ScalarType & operator [] ( const int i ) { assert(i>=0 && i<2); return _v[i]; } //@} /// empty constructor (does nothing) inline Point2 () { } /// x,y constructor inline Point2 ( const ScalarType nx, const ScalarType ny ) { _v[0] = nx; _v[1] = ny; } /// copy constructor inline Point2 ( Point2 const & p) { _v[0]= p._v[0]; _v[1]= p._v[1]; } /// copy inline Point2 & operator =( Point2 const & p) { _v[0]= p._v[0]; _v[1]= p._v[1]; return *this; } /// sets the point to (0,0) inline void Zero() { _v[0] = 0;_v[1] = 0;} /// dot product inline ScalarType operator * ( Point2 const & p ) const { return ( _v[0]*p._v[0] + _v[1]*p._v[1] ); } /// cross product inline ScalarType operator ^ ( Point2 const & p ) const { return _v[0]*p._v[1] - _v[1]*p._v[0]; } //@{ /** @name Linearity for 2d points (operators +, -, *, /, *= ...) **/ inline Point2 operator + ( Point2 const & p) const { return Point2( _v[0]+p._v[0], _v[1]+p._v[1] ); } inline Point2 operator - ( Point2 const & p) const { return Point2( _v[0]-p._v[0], _v[1]-p._v[1] ); } inline Point2 operator * ( const ScalarType s ) const { return Point2( _v[0] * s, _v[1] * s ); } inline Point2 operator / ( const ScalarType s ) const { return Point2( _v[0] / s, _v[1] / s ); } inline Point2 & operator += ( Point2 const & p) { _v[0] += p._v[0]; _v[1] += p._v[1]; return *this; } inline Point2 & operator -= ( Point2 const & p) { _v[0] -= p._v[0]; _v[1] -= p._v[1]; return *this; } inline Point2 & operator *= ( const ScalarType s ) { _v[0] *= s; _v[1] *= s; return *this; } inline Point2 & operator /= ( const ScalarType s ) { _v[0] /= s; _v[1] /= s; return *this; } //@} /// returns the norm (Euclidian) inline ScalarType Norm( void ) const { return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] ); } /// returns the squared norm (Euclidian) inline ScalarType SquaredNorm( void ) const { return ( _v[0]*_v[0] + _v[1]*_v[1] ); } inline Point2 & Scale( const ScalarType sx, const ScalarType sy ); /// normalizes, and returns itself as result inline Point2 & Normalize( void ) { ScalarType n = math::Sqrt(_v[0]*_v[0] + _v[1]*_v[1]); if(n>0.0) { _v[0] /= n; _v[1] /= n; } return *this; } /// points equality inline bool operator == ( Point2 const & p ) const { return (_v[0]==p._v[0] && _v[1]==p._v[1]); } /// disparity between points inline bool operator != ( Point2 const & p ) const { return ( (_v[0]!=p._v[0]) || (_v[1]!=p._v[1]) ); } /// lexical ordering inline bool operator < ( Point2 const & p ) const { return (_v[1]!=p._v[1])?(_v[1] ( Point2 const & p ) const { return (_v[1]!=p._v[1])?(_v[1]>p._v[1]): (_v[0]>p._v[0]); } /// lexical ordering inline bool operator <= ( Point2 const & p ) const { return (_v[1]!=p._v[1])?(_v[1]< p._v[1]): (_v[0]<=p._v[0]); } /// lexical ordering inline bool operator >= ( Point2 const & p ) const { return (_v[1]!=p._v[1])?(_v[1]> p._v[1]): (_v[0]>=p._v[0]); } /// returns the distance to another point p inline ScalarType Distance( Point2 const & p ) const { return Norm(*this-p); } /// returns the suqared distance to another point p inline ScalarType SquaredDistance( Point2 const & p ) const { return Norm2(*this-p); } /// returns the angle with X axis (radiants, in [-PI, +PI] ) inline ScalarType Angle() const { return math::Atan2(_v[1],_v[0]); } /// transform the point in cartesian coords into polar coords inline Point2 & Cartesian2Polar() { ScalarType t = Angle(); _v[0] = Norm(); _v[1] = t; return *this; } /// transform the point in polar coords into cartesian coords inline Point2 & Polar2Cartesian() { ScalarType l = _v[0]; _v[0] = (ScalarType)(l*math::Cos(_v[1])); _v[1] = (ScalarType)(l*math::Sin(_v[1])); return *this; } /// rotates the point of an angle (radiants, counterclockwise) inline Point2 & Rotate( const ScalarType rad ) { ScalarType t = _v[0]; ScalarType s = math::Sin(rad); ScalarType c = math::Cos(rad); _v[0] = _v[0]*c - _v[1]*s; _v[1] = t *s + _v[1]*c; return *this; } /// Questa funzione estende il vettore ad un qualsiasi numero di dimensioni /// paddando gli elementi estesi con zeri inline ScalarType Ext( const int i ) const { if(i>=0 && i<2) return _v[i]; else return 0; } /// imports from 2D points of different types template inline void Import( const Point2 & b ) { _v[0] = b.X(); _v[1] = b.Y(); } /// constructs a 2D points from an existing one of different type template static Point2 Construct( const Point2 & b ) { return Point2(b.X(),b.Y()); } }; // end class definition template inline T Angle( Point2 const & p0, Point2 const & p1 ) { return p1.Angle() - p0.Angle(); } template inline Point2 operator - ( Point2 const & p ){ return Point2( -p[0], -p[1] ); } template inline Point2 operator * ( const T s, Point2 const & p ){ return Point2( p[0] * s, p[1] * s ); } template inline T Norm( Point2 const & p ){ return p.Norm(); } template inline T SquaredNorm( Point2 const & p ){ return p.SquaredNorm(); } template inline Point2 & Normalize( Point2 & p ){ return p.Normalize(); } template inline T Distance( Point2 const & p1,Point2 const & p2 ){ return Norm(p1-p2); } template inline T SquaredDistance( Point2 const & p1,Point2 const & p2 ){ return SquaredNorm(p1-p2); } typedef Point2 Point2s; typedef Point2 Point2i; typedef Point2 Point2f; typedef Point2 Point2d; /*@}*/ } // end namespace #endif