/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.2 2005/02/02 16:01:13 pietroni 1 warning corrected Revision 1.1 2004/10/12 15:42:29 ganovelli first working version ****************************************************************************/ #ifndef __VCGLIB_REFINE #define __VCGLIB_REFINE #include #include #include #include #include #include #include #include #include namespace vcg{ /* Tabella che codifica le modalita' di split a seconda di quali dei tre edge sono da splittare Il primo numero codifica il numero di triangoli, le successive 5 triple codificano i triangoli secondo la seguente convenzione: 0..2 vertici originali del triangolo 3..5 mp01, mp12, mp20 midpoints of the three edges Nel caso "due lati splittati" e' necessario fare la triangolazione del trapezio bene. Per cui in questo caso sono specificati 5 triangoli, il primo e' quello ovvio, se dei due lati splittati e' minore il primo va scelta la prima coppia altrimenti la seconda coppia il campo swap codificano le due diagonali da testare per scegliere quale triangolazione usare per il caso con tre triangoli: se diag1 struct MidPoint : public std::unary_function , typename typename MESH_TYPE::CoordType > { void operator()(typename MESH_TYPE::VertexType &nv, face::Pos ep){ nv.P()= (ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0; if( MESH_TYPE::HasPerVertexNormal()) nv.N()= (ep.f->V(ep.z)->N()+ep.f->V1(ep.z)->N()).Normalize(); if( MESH_TYPE::HasPerVertexColor()) nv.C().lerp(ep.f->V(ep.z)->C(),ep.f->V1(ep.z)->C(),.5f); } Color4 WedgeInterp(Color4 &c0, Color4 &c1) { Color4 cc; return cc.lerp(c0,c1,0.5f); } template TCoord2 WedgeInterp(TCoord2 &t0, TCoord2 &t1) { TCoord2 tmp; assert(t0.n()== t1.n()); tmp.n()=t0.n(); tmp.t()=(t0.t()+t1.t())/2.0; return tmp; } }; template struct MidPointArc : public std::unary_function , typename typename MESH_TYPE::CoordType> { void operator()(typename MESH_TYPE::VertexType &nv, face::Pos ep) { const typename MESH_TYPE::ScalarType EPS =1e-10; typename MESH_TYPE::CoordType vp = (ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0; typename MESH_TYPE::CoordType n = (ep.f->V(ep.z)->N()+ep.f->V1(ep.z)->N())/2.0; typename MESH_TYPE::ScalarType w =n.Norm(); if(wV(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0; return;} n/=w; typename MESH_TYPE::CoordType d0 = ep.f->V(ep.z)->P() - vp; typename MESH_TYPE::CoordType d1 = ep.f->V1(ep.z)->P()- vp; typename MESH_TYPE::ScalarType d=Distance(ep.f->V(ep.z)->P(),ep.f->V1(ep.z)->P())/2.0; typename MESH_TYPE::CoordType nn = ep.f->V1(ep.z)->N() ^ ep.f->V(ep.z)->N(); typename MESH_TYPE::CoordType np = n ^ d0; // vettore perp al piano edge, normale interpolata np.Normalize(); double sign=1; if(np*nn<0) sign=-1; // se le normali non divergono sposta il punto nella direzione opposta typename MESH_TYPE::CoordType n0=ep.f->V(ep.z)->N() -np*(ep.f->V(ep.z)->N()*np); n0.Normalize(); typename MESH_TYPE::CoordType n1=ep.f->V1(ep.z)->N()-np*(ep.f->V1(ep.z)->N()*np); assert(n1.Norm()>EPS); n1.Normalize(); typename MESH_TYPE::ScalarType cosa0=n0*n; typename MESH_TYPE::ScalarType cosa1=n1*n; if(2-cosa0-cosa1V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0;return;} typename MESH_TYPE::ScalarType cosb0=(d0*n)/d; typename MESH_TYPE::ScalarType cosb1=(d1*n)/d; assert(1+cosa0>EPS); assert(1+cosa1>EPS); typename MESH_TYPE::ScalarType delta0=d*(cosb0 +sqrt( ((1-cosb0*cosb0)*(1-cosa0))/(1+cosa0)) ); typename MESH_TYPE::ScalarType delta1=d*(cosb1 +sqrt( ((1-cosb1*cosb1)*(1-cosa1))/(1+cosa1)) ); assert(delta0+delta1<2*d); nv.P()=vp+n*sign*(delta0+delta1)/2.0; return ; } // Aggiunte in modo grezzo le due wedgeinterp Color4 WedgeInterp(Color4 &c0, Color4 &c1) { Color4 cc; return cc.lerp(c0,c1,0.5f); } template TCoord2 WedgeInterp(TCoord2 &t0, TCoord2 &t1) { TCoord2 tmp; assert(t0.n()== t1.n()); tmp.n()=t0.n(); tmp.t()=(t0.t()+t1.t())/2.0; return tmp; } }; /* Versione Della Midpoint basata sul paper: S. Karbacher, S. Seeger, G. Hausler A non linear subdivision scheme for triangle meshes Non funziona! Almeno due problemi: 1) il verso delle normali influenza il risultato (e.g. si funziona solo se le normali divergono) Risolvibile controllando se le normali divergono 2) gli archi vanno calcolati sul piano definito dalla normale interpolata e l'edge. funziona molto meglio nelle zone di sella e non semplici. */ template struct MidPointArcNaive : public std::unary_function< face::Pos , typename MESH_TYPE::CoordType> { typename MESH_TYPE::CoordType operator()(face::Pos ep) { typename MESH_TYPE::CoordType vp = (ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0; typename MESH_TYPE::CoordType n = (ep.f->V(ep.z)->N()+ep.f->V1(ep.z)->N())/2.0; n.Normalize(); typename MESH_TYPE::CoordType d0 = ep.f->V(ep.z)->P() - vp; typename MESH_TYPE::CoordType d1 = ep.f->V1(ep.z)->P()- vp; typename MESH_TYPE::ScalarType d=Distance(ep.f->V(ep.z)->P(),ep.f->V1(ep.z)->P())/2.0; typename MESH_TYPE::ScalarType cosa0=ep.f->V(ep.z)->N()*n; typename MESH_TYPE::ScalarType cosa1=ep.f->V1(ep.z)->N()*n; typename MESH_TYPE::ScalarType cosb0=(d0*n)/d; typename MESH_TYPE::ScalarType cosb1=(d1*n)/d; typename MESH_TYPE::ScalarType delta0=d*(cosb0 +sqrt( ((1-cosb0*cosb0)*(1-cosa0))/(1+cosa0)) ); typename MESH_TYPE::ScalarType delta1=d*(cosb1 +sqrt( ((1-cosb1*cosb1)*(1-cosa1))/(1+cosa1)) ); return vp+n*(delta0+delta1)/2.0; } }; /* A partire da una mesh raffina una volta tutti i lati dei triangoli minore di thr Se RefineSelected == true allora raffina SOLO le facce selezionate i cui edge sono piu'corti di thr. I nuovi vertici e facce della mesh sono aggiunte in fondo Requirement: Topologia (in effetti se non si usa la il raffinamento per selezione non servirebbe) Restituisce false se non raffina nemmeno una faccia. Si assume che se la mesh ha dati per wedge la funzione di midpoint interpoli i nuovi wedge tutti uguali per tutti i wedge sulla stessa 'vecchia' faccia. */ // binary predicate che dice quando splittare un edge // la refine usa qt funzione di default: raffina se l'edge^2 e' piu lungo di thr2 template class EdgeLen { public: FLT thr2; bool operator()(const Point3 &p0, const Point3 &p1) const { return SquaredDistance(p0,p1)>thr2; } }; /* template bool Refine(MESH_TYPE &m, MIDPOINT mid, typename MESH_TYPE::ScalarType thr=0,bool RefineSelectedP=false) { volatile RefineW,true> RT; volatile RefineW,false> RF; bool retval; if(RefineSelectedP) retval=RT.RefineT(m,mid,thr); if(!RefineSelectedP) retval=RF.RefineT(m,mid,thr); return retval; } template bool RefineE(MESH_TYPE &m, MIDPOINT mid, EDGEPRED ep, bool RefineSelectedP=false) { RefineW RT; RefineW RF; bool retval; if(RefineSelectedP) retval=RT.RefineT(m,mid,ep); if(!RefineSelectedP) retval=RF.RefineT(m,mid,ep); return retval; } */ /*********************************************************/ /*********************************************************/ /*********************************************************/ template bool Refine(MESH_TYPE &m, MIDPOINT mid, typename MESH_TYPE::ScalarType thr=0,bool RefineSelected=false) { EdgeLen ep; ep.thr2=thr*thr; return RefineE(m,mid,ep,RefineSelected); } template bool RefineE(MESH_TYPE &m, MIDPOINT mid, EDGEPRED ep,bool RefineSelected=false) { int j,NewVertNum=0,NewFaceNum=0; typedef std::pair vvpair; std::map Edge2Vert; // Primo ciclo si conta quanti sono i vertici e facce da aggiungere MESH_TYPE::FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(j=0;j<3;j++){ if(ep((*fi).V(j)->P(),(*fi).V1(j)->P()) && (!RefineSelected || ((*fi).IsS() && (*fi).FFp(j)->IsS())) ){ ++NewFaceNum; if(((*fi).V(j)<(*fi).V1(j)) || (*fi).IsB(j)) ++NewVertNum; } } if(NewVertNum==0) return false; typename MESH_TYPE::VertexIterator lastv = tri::Allocator::AddVertices(m,NewVertNum); // typename MESH_TYPE::VertexIterator lastv=m.AddVertices(NewVertNum); // Secondo Ciclo si inizializza la mappa da edge a vertici // e la posizione dei nuovi vertici for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(j=0;j<3;j++) if(ep((*fi).V(j)->P(),(*fi).V1(j)->P()) && (!RefineSelected || ((*fi).IsS() && (*fi).FFp(j)->IsS())) ) if((*fi).V(j)<(*fi).V1(j) || (*fi).IsB(j)){ (*lastv).UberFlags()=0; mid( (*lastv), face::Pos (&*fi,j)); //(*lastv).P()=((*fi).V(j)->P()+(*fi).V1(j)->P())/2; Edge2Vert[ vvpair((*fi).V(j),(*fi).V1(j)) ] = lastv; ++lastv; } assert(lastv==m.vert.end()); typename MESH_TYPE::FaceIterator lastf = tri::Allocator::AddFaces(m,NewFaceNum); // MESH_TYPE::FaceIterator lastf = m.AddFaces(NewFaceNum); // int ddd=0; distance(m.face.begin(),lastf,ddd); typename MESH_TYPE::FaceIterator oldendf=lastf; /* v0 f0 mp01 mp02 f3 f1 f2 v1 mp12 v2 */ typename MESH_TYPE::VertexIterator vv[6]; // i sei vertici in gioco // 0..2 vertici originali del triangolo // 3..5 mp01, mp12, mp20 midpoints of the three edges MESH_TYPE::FaceIterator nf[4]; // le quattro facce in gioco. TCoord2 wtt[6]; // per ogni faccia sono al piu' tre i nuovi valori // di texture per wedge (uno per ogni edge) int fca=0,fcn =0; for(fi=m.face.begin();fi!=oldendf;++fi) if(!(*fi).IsD()) {fcn++; vv[0]=(*fi).V(0); vv[1]=(*fi).V(1); vv[2]=(*fi).V(2); bool e0=ep((*fi).V(0)->P(),(*fi).V(1)->P()); bool e1=ep((*fi).V(1)->P(),(*fi).V(2)->P()); bool e2=ep((*fi).V(2)->P(),(*fi).V(0)->P()); if(e0) if((*fi).V(0)<(*fi).V(1)|| (*fi).IsB(0)) vv[3]=Edge2Vert[ vvpair((*fi).V(0),(*fi).V(1)) ]; else vv[3]=Edge2Vert[ vvpair((*fi).V(1),(*fi).V(0)) ]; else vv[3]=0; if(e1) if((*fi).V(1)<(*fi).V(2)|| (*fi).IsB(1)) vv[4]=Edge2Vert[ vvpair((*fi).V(1),(*fi).V(2)) ]; else vv[4]=Edge2Vert[ vvpair((*fi).V(2),(*fi).V(1)) ]; else vv[4]=0; if(e2) if((*fi).V(2)<(*fi).V(0)|| (*fi).IsB(2)) vv[5]=Edge2Vert[ vvpair((*fi).V(2),(*fi).V(0)) ]; else vv[5]=Edge2Vert[ vvpair((*fi).V(0),(*fi).V(2)) ]; else vv[5]=0; int ind=((&*vv[3])?1:0)+((&*vv[4])?2:0)+((&*vv[5])?4:0); nf[0]=fi; static int iii=0; for(int i=1;iP(),vv[SplitTab[ind].swap[0][1]]->P()) < SquaredDistance(vv[SplitTab[ind].swap[1][0]]->P(),vv[SplitTab[ind].swap[1][1]]->P()) ) { // swap the last two triangles (*nf[2]).V(1)=(*nf[1]).V(0); (*nf[1]).V(1)=(*nf[2]).V(0); if(MESH_TYPE::HasPerWedgeTexture()){ //analogo ai vertici... (*nf[2]).WT(1)=(*nf[1]).WT(0); (*nf[1]).WT(1)=(*nf[2]).WT(0); } if((*nf[1]).IsB(0)) (*nf[2]).SetB(1); else (*nf[2]).ClearB(1); if((*nf[2]).IsB(0)) (*nf[1]).SetB(1); else (*nf[1]).ClearB(1); (*nf[1]).ClearB(0); (*nf[2]).ClearB(0); } } m.fn= m.face.size(); assert(lastf==m.face.end()); for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()){ assert((*fi).V(0)>=&*m.vert.begin() && (*fi).V(0)<&*m.vert.end() ); assert((*fi).V(1)>=&*m.vert.begin() && (*fi).V(1)<&*m.vert.end() ); assert((*fi).V(2)>=&*m.vert.begin() && (*fi).V(2)<&*m.vert.end() ); } vcg::tri::UpdateTopology::FaceFace(m); return true; } /*************************************************************************/ /* Modified Butterfly interpolation scheme, as presented in Zorin, Schroeder Subdivision for modeling and animation Siggraph 2000 Course Notes */ /* vul-------vu--------vur \ / \ / \ / \ / \ / fu \ / vl--------vr / \ fd / \ / \ / \ / \ / \ vdl-------vd--------vdr */ template struct MidPointButterfly : public std::unary_function , typename MESH_TYPE::CoordType> { void operator()(typename MESH_TYPE::VertexType &nv, face::Pos ep) { face::Pos he(ep.f,ep.z,ep.f->V(ep.z)); typename MESH_TYPE::CoordType *vl,*vr; typename MESH_TYPE::CoordType *vl0,*vr0; typename MESH_TYPE::CoordType *vu,*vd,*vul,*vur,*vdl,*vdr; vl=&he.v->P(); he.FlipV(); vr=&he.v->P(); if(he.IsBorder()) { he.NextB(); vr0=&he.v->P(); he.FlipV(); he.NextB(); assert(&he.v->P()==vl); he.NextB(); vl0=&he.v->P(); nv.P()=((*vl)+(*vr))*(9.0/16.0)-((*vl0)+(*vr0))/16.0 ; } else { he.FlipE();he.FlipV(); vu=&he.v->P(); he.FlipF();he.FlipE();he.FlipV(); vur=&he.v->P(); he.FlipV();he.FlipE();he.FlipF(); assert(&he.v->P()==vu); // back to vu (on the right) he.FlipE(); he.FlipF();he.FlipE();he.FlipV(); vul=&he.v->P(); he.FlipV();he.FlipE();he.FlipF(); assert(&he.v->P()==vu); // back to vu (on the left) he.FlipV();he.FlipE();he.FlipF(); assert(&he.v->P()==vl);// again on vl (but under the edge) he.FlipE();he.FlipV(); vd=&he.v->P(); he.FlipF();he.FlipE();he.FlipV(); vdl=&he.v->P(); he.FlipV();he.FlipE();he.FlipF(); assert(&he.v->P()==vd);// back to vd (on the right) he.FlipE(); he.FlipF();he.FlipE();he.FlipV(); vdr=&he.v->P(); nv.P()=((*vl)+(*vr))/2.0+((*vu)+(*vd))/8.0 - ((*vul)+(*vur)+(*vdl)+(*vdr))/16.0; } } /// Aggiunte in modo grezzo le due wedge interp Color4 WedgeInterp(Color4 &c0, Color4 &c1) { Color4 cc; return cc.lerp(c0,c1,0.5f); } template TCoord2 WedgeInterp(TCoord2 &t0, TCoord2 &t1) { TCoord2 tmp; assert(t0.n()== t1.n()); tmp.n()=t0.n(); tmp.t()=(t0.t()+t1.t())/2.0; return tmp; } }; #if 0 int rule=0; if(vr==vul) rule+=1; if(vl==vur) rule+=2; if(vl==vdr) rule+=4; if(vr==vdl) rule+=8; switch(rule){ /* /* */ case 0 : return ((*vl)+(*vr))/2.0+((*vu)+(*vd))/8.0 - ((*vul)+(*vur)+(*vdl)+(*vdr))/16.0; /* ul */ case 1 : return (*vl*6 + *vr*10 + *vu + *vd*3 - *vur - *vdl -*vdr*2 )/16.0; /* ur */ case 2 : return (*vr*6 + *vl*10 + *vu + *vd*3 - *vul - *vdr -*vdl*2 )/16.0; /* dr */ case 4 : return (*vr*6 + *vl*10 + *vd + *vu*3 - *vdl - *vur -*vul*2 )/16.0; /* dl */ case 8 : return (*vl*6 + *vr*10 + *vd + *vu*3 - *vdr - *vul -*vur*2 )/16.0; /* ul,ur */ case 3 : return (*vl*4 + *vr*4 + *vd*2 + - *vdr - *vdl )/8.0; /* dl,dr */ case 12 : return (*vl*4 + *vr*4 + *vu*2 + - *vur - *vul )/8.0; /* ul,dr */ case 5 : /* ur,dl */ case 10 : default: return (*vl+ *vr)/2.0; } #endif /* vul-------vu--------vur \ / \ / \ / \ / \ / fu \ / vl--------vr / \ fd / \ / \ / \ / \ / \ vdl-------vd--------vdr */ // Versione modificata per tenere di conto in meniara corretta dei vertici con valenza alta template struct MidPointButterfly2 : public std::unary_function , typename MESH_TYPE::CoordType> { typename MESH_TYPE::CoordType operator()(face::Pos ep) { double Rules[11][10] = { {.0}, // valenza 0 {.0}, // valenza 1 {.0}, // valenza 2 { .4166666667, -.08333333333 , -.08333333333 }, // valenza 3 { .375 , .0 , -0.125 , .0 }, // valenza 4 { .35 , .03090169945 , -.08090169945 , -.08090169945, .03090169945 }, // valenza 5 { .5 , .125 , -0.0625 , .0 , -0.0625 , 0.125 }, // valenza 6 { .25 , .1088899050 , -.06042933822 , -.04846056675, -.04846056675, -.06042933822, .1088899050 }, // valenza 7 { .21875 , .1196383476 , -.03125 , -.05713834763, -.03125 , -.05713834763, -.03125 ,.1196383476 }, // valenza 8 { .1944444444, .1225409480 , -.00513312590 , -.05555555556, -.03407448880, -.03407448880, -.05555555556, -.00513312590, .1225409480 }, // valenza 9 { .175 , .1213525492 , .01545084973 , -.04635254918, -.04045084973, -.025 , -.04045084973, -.04635254918, .01545084973, .1213525492 } // valenza 10 }; Pos he(ep.f,ep.z,ep.f->V(ep.z)); typename MESH_TYPE::CoordType *vl,*vr; vl=&he.v->P(); vr=&he.VFlip()->P(); if(he.IsBorder()) {he.FlipV(); typename MESH_TYPE::CoordType *vl0,*vr0; he.NextB(); vr0=&he.v->P(); he.FlipV(); he.NextB(); assert(&he.v->P()==vl); he.NextB(); vl0=&he.v->P(); return ((*vl)+(*vr))*(9.0/16.0)-((*vl0)+(*vr0))/16.0 ; } int kl=0,kr=0; // valence of left and right vertices bool bl=false,br=false; // if left and right vertices are of border Pos heStart=he;assert(he.v->P()==*vl); do { // compute valence of left vertex he.FlipE();he.FlipF(); if(he.IsBorder()) bl=true; ++kl; } while(he!=heStart); he.FlipV();heStart=he;assert(he.v->P()==*vr); do { // compute valence of right vertex he.FlipE();he.FlipF(); if(he.IsBorder()) br=true; ++kr; } while(he!=heStart); if(br||bl) return MidPointButterfly()( ep ); if(kr==6 && kl==6) return MidPointButterfly()( ep ); TRACE("odd vertex among valences of %i %i\n",kl,kr); typename MESH_TYPE::CoordType newposl=*vl*.75, newposr=*vr*.75; he.FlipV();heStart=he; assert(he.v->P()==*vl); int i=0; if(kl!=6) do { // compute position of left vertex newposl+= he.VFlip()->P() * Rules[kl][i]; he.FlipE();he.FlipF(); ++i; } while(he!=heStart); i=0;he.FlipV();heStart=he;assert(he.v->P()==*vr); if(kr!=6) do { // compute position of right vertex newposr+=he.VFlip()->P()* Rules[kr][i]; he.FlipE();he.FlipF(); ++i; } while(he!=heStart); if(kr==6) return newposl; if(kl==6) return newposr; return newposl+newposr; } }; /* // Nuovi punti (e.g. midpoint) template struct OddPointLoop : public std::unary_function , typename MESH_TYPE::CoordType> { } // vecchi punti template struct EvenPointLoop : public std::unary_function , typename MESH_TYPE::CoordType> { } */ template struct MidPointPlane : public std::unary_function , typename MESH_TYPE::CoordType> { Plane3 pl; typedef Point3 Point3x; void operator()(typename MESH_TYPE::VertexType &nv, face::Pos ep){ Point3x &p0=ep.f->V0(ep.z)->P(); Point3x &p1=ep.f->V1(ep.z)->P(); double pp= Distance(p0,pl)/(Distance(p0,pl) - Distance(p1,pl)); nv.P()=p1*pp + p0*(1.0-pp); } Color4 WedgeInterp(Color4 &c0, Color4 &c1) { Color4 cc; return cc.lerp(c0,c1,0.5f); } template TCoord2 WedgeInterp(TCoord2 &t0, TCoord2 &t1) { TCoord2 tmp; assert(t0.n()== t1.n()); tmp.n()=t0.n(); tmp.t()=(t0.t()+t1.t())/2.0; return tmp; } }; template class EdgeSplPlane { public: Plane3 pl; bool operator()(const Point3 &p0, const Point3 &p1) const { if(Distance(pl,p0)>0) { if(Distance(pl,p1)>0) return false; else return true; } else if(Distance(pl,p1)<=0) return false; return true; } }; template struct MidPointSphere : public std::unary_function , typename MESH_TYPE::CoordType> { Sphere3 sph; typedef Point3 Point3x; void operator()(typename MESH_TYPE::VertexType &nv, face::Pos ep){ Point3x &p0=ep.f->V0(ep.z)->P(); Point3x &p1=ep.f->V1(ep.z)->P(); nv.P()= sph.c+((p0+p1)/2.0 - sph.c ).Normalize(); } Color4 WedgeInterp(Color4 &c0, Color4 &c1) { Color4 cc; return cc.lerp(c0,c1,0.5f); } template TCoord2 WedgeInterp(TCoord2 &t0, TCoord2 &t1) { TCoord2 tmp; assert(t0.n()== t1.n()); tmp.n()=t0.n(); tmp.t()=(t0.t()+t1.t())/2.0; return tmp; } }; template class EdgeSplSphere { public: Sphere3 sph; bool operator()(const Point3 &p0, const Point3 &p1) const { if(Distance(sph,p0)>0) { if(Distance(sph,p1)>0) return false; else return true; } else if(Distance(sph,p1)<=0) return false; return true; } }; } // namespace vcg #endif