/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.6 2004/07/15 00:13:39 cignoni Better doxigen documentation Revision 1.5 2004/07/06 06:27:02 cignoni Added FaceBorderFromVF Revision 1.4 2004/05/13 15:58:55 ganovelli function Clear added Revision 1.3 2004/03/12 15:22:19 cignoni Written some documentation and added to the trimes doxygen module Revision 1.2 2004/03/10 00:46:10 cignoni changed to the face::IsBorder() style Revision 1.1 2004/03/05 10:59:24 cignoni Changed name from plural to singular (normals->normal) Revision 1.1 2004/03/04 00:37:56 cignoni First working version! ****************************************************************************/ #ifndef __VCG_TRI_UPDATE_FLAGS #define __VCG_TRI_UPDATE_FLAGS #include namespace vcg { namespace tri { /** \addtogroup trimesh */ /*@{*/ /// Management, updating and computation of per-vertex and per-face flags (like border flags). /// This class is used to compute or update some of the flags that can be stored in the mesh components. For now just Border flags (e.g. the flag that tells if a given edge of a face belong to a border of the mesh or not). template class UpdateFlags { public: typedef UpdateMeshType MeshType; typedef vcg::face::Pos PosType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; /** Reset all the mesh flags (both vertexes and faces) setting everithing to zero (the default value for flags) **/ static void Clear(MeshType &m) { FaceIterator fi; VertexIterator vi; for(fi=m.face.begin(); fi!=m.face.end(); ++fi) (*fi).Flags() = 0; for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi) (*vi).Flags() = 0; } /** Compute the border flags for the faces using the Face-Face Topology. Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace ) **/ static void FaceBorderFromFF(MeshType &m) { // const int BORDERFLAG[3]={FaceType::BORDER0,FaceType::BORDER1,FaceType::BORDER2}; FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD()) for(int j=0;j<3;++j) { //if(!(*fi).IsManifold(j)) (*fi).SetCF(j); //else if(face::IsBorder(*fi,j)) (*fi).SetB(j); else (*fi).ClearB(j); } } static void FaceBorderFromVF(MeshType &m) { VertexIterator vi; assert(m.HasVFTopology()); int visitedBit=VertexType::NewBitFlag(); // Calcolo dei bordi // per ogni vertice vi si cercano i vertici adiacenti che sono toccati da una faccia sola // (o meglio da un numero dispari di facce) const int BORDERFLAG[3]={FaceType::BORDER0, FaceType::BORDER1, FaceType::BORDER2}; for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) { for(face::VFIterator vfi(&*vi) ; !vfi.End(); ++vfi ) { vfi.f->V1(vfi.z)->ClearUserBit(visitedBit); vfi.f->V2(vfi.z)->ClearUserBit(visitedBit); } for(face::VFIterator vfi(&*vi) ; !vfi.End(); ++vfi ) { if(vfi.f->V1(vfi.z)->IsUserBit(visitedBit)) vfi.f->V1(vfi.z)->ClearUserBit(visitedBit); else vfi.f->V1(vfi.z)->SetUserBit(visitedBit); if(vfi.f->V2(vfi.z)->IsUserBit(visitedBit)) vfi.f->V2(vfi.z)->ClearUserBit(visitedBit); else vfi.f->V2(vfi.z)->SetUserBit(visitedBit); } for(face::VFIterator vfi(&*vi) ; !vfi.End(); ++vfi ) { if(vfi.f->V(vfi.z)< vfi.f->V1(vfi.z) && vfi.f->V1(vfi.z)->IsUserBit(visitedBit)) vfi.f->Flags() |= BORDERFLAG[vfi.z]; if(vfi.f->V(vfi.z)< vfi.f->V2(vfi.z) && vfi.f->V2(vfi.z)->IsUserBit(visitedBit)) vfi.f->Flags() |= BORDERFLAG[(vfi.z+2)%3]; } } VertexType::DeleteBitFlag(VertexType::LastBitFlag()); } // versione minimale che non calcola i complex flag. void FaceBorderFromNone(MeshType &m) { std::vector e; typename UpdateMeshType::FaceIterator pf; typename std::vector::iterator p; if( fn == 0 ) return; e.resize(fn*3); // Alloco il vettore ausiliario p = e.begin(); for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce if( ! (*pf).IsDeleted() ) for(int j=0;j<3;++j) { (*p).Set(&(*pf),j); (*pf).ClearB(j); ++p; } assert(p==e.end()); sort(e.begin(), e.end()); // Lo ordino per vertici typename std::vector::iterator pe,ps; for(ps = e.begin(), pe=e.begin(); pe<=e.end(); ++pe) // Scansione vettore ausiliario { if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali { if(pe-ps==1) { //++nborder; ps->f->SetB(ps->z); } else if(pe-ps!=2) { // Caso complex!! for(;ps!=pe;++ps) ps->f->SetB(ps->z); // Si settano border anche i complex. } ps = pe; // ++ne; // Aggiorno il numero di edge } } // TRACE("found %i border (%i complex) on %i edges\n",nborder,ncomplex,ne); } /// Bisogna carlcolare il border flag delle facce void VertexBorderFromFace(MeshType &m) { typename MeshType::VertexIterator v; typename MeshType::FaceIterator f; for(v=vert.begin();v!=vert.end();++v) (*v).ClearB(); for(f=m.face.begin();f!=m.face.end();++f) { for(int z=0;z<3;++z) if( (*f).IsB(z) ) { (*f).V0(z)->SetB(); (*f).V1(z)->SetB(); } } } }; // end class /*@}*/ } // End namespace } // End namespace #endif