/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** The sampling Class has a set of static functions, that you can call to sample the surface of a mesh. Each function is templated on the mesh and on a Sampler object s. Each function calls many time the sample object with the sampling point as parameter. Sampler Classes and Sampling algorithms are independent. Sampler classes exploits the sample that are generated with various algorithms. For example, you can compute Hausdorff distance (that is a sampler) using various sampling strategies (montecarlo, stratified etc). ****************************************************************************/ #ifndef __VCGLIB_POINT_SAMPLING #define __VCGLIB_POINT_SAMPLING #include #include #include #include #include #include namespace vcg { namespace tri { /// Trivial Sampler, an example sampler object that show the required interface used by the sampling class. /// Most of the sampling classes call the AddFace method with the face containing the sample and its barycentric coord. template class TrivialSampler { public: typedef typename MeshType::CoordType CoordType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::FaceType FaceType; TrivialSampler(){}; std::vector sampleVec; void AddVert(const VertexType &p) { sampleVec.push_back(p.cP()); } void AddFace(const FaceType &f, const CoordType &p) { sampleVec.push_back(f.P(0)*p[0] + f.P(1)*p[1] +f.P(2)*p[2] ); } void AddTextureSample(const FaceType &, const CoordType &, const Point2i &) { // Retrieve the color of the sample from the face f using the barycentric coord p // and write that color in a texture image at position tp[0],tp[1] } }; // end class TrivialSampler template class SurfaceSampling { typedef typename MetroMesh::CoordType CoordType; typedef typename MetroMesh::ScalarType ScalarType; typedef typename MetroMesh::VertexType VertexType; typedef typename MetroMesh::VertexPointer VertexPointer; typedef typename MetroMesh::VertexIterator VertexIterator; typedef typename MetroMesh::FacePointer FacePointer; typedef typename MetroMesh::FaceIterator FaceIterator; typedef typename MetroMesh::FaceType FaceType; typedef typename MetroMesh::FaceContainer FaceContainer; typedef typename vcg::SpatialHashTable MeshSHT; typedef typename vcg::SpatialHashTable::CellIterator MeshSHTIterator; typedef typename vcg::SpatialHashTable MontecarloSHT; typedef typename vcg::SpatialHashTable::CellIterator MontecarloSHTIterator; typedef typename vcg::SpatialHashTable SampleSHT; typedef typename vcg::SpatialHashTable::CellIterator SampleSHTIterator; public: static math::MarsenneTwisterRNG &SamplingRandomGenerator() { static math::MarsenneTwisterRNG rnd; return rnd; } // Returns an integer random number in the [0,i-1] interval using the improve Marsenne-Twister method. static unsigned int RandomInt(unsigned int i) { return (SamplingRandomGenerator().generate(0) % i); } // Returns a random number in the [0,1) real interval using the improved Marsenne-Twister method. static double RandomDouble01() { return SamplingRandomGenerator().generate01(); } // Returns a random number in the [0,1] real interval using the improved Marsenne-Twister. static double RandomDouble01closed() { return SamplingRandomGenerator().generate01closed(); } static void AllVertex(MetroMesh & m, VertexSampler &ps) { VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) { if(!(*vi).IsD()) { ps.AddVert(*vi); } } } /// Sample the vertices in a weighted way. Each vertex has a probability of being chosen /// that is proportional to its quality. /// It assumes that you are asking a number of vertices smaller than nv; /// Algorithm: /// 1) normalize quality so that sum q == 1; /// 2) shuffle vertices. /// 3) for each vertices choose it if rand > thr; static void VertexWeighted(MetroMesh & m, VertexSampler &ps, int sampleNum) { ScalarType qSum = 0; VertexIterator vi; for(vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) qSum += (*vi).Q(); ScalarType samplePerUnit = sampleNum/qSum; ScalarType floatSampleNum =0; std::vector vertVec; FillAndShuffleVertexPointerVector(m,vertVec); std::vector vertUsed(m.vn,false); int i=0; int cnt=0; while(cnt < sampleNum) { if(vertUsed[i]) { floatSampleNum += vertVec[i]->Q() * samplePerUnit; int vertSampleNum = (int) floatSampleNum; floatSampleNum -= (float) vertSampleNum; // for every sample p_i in T... if(vertSampleNum > 1) { ps.AddVert(*vertVec[i]); cnt++; vertUsed[i]=true; } } i = (i+1)%m.vn; } } /// Sample the vertices in a uniform way. Each vertex has a probability of being chosen /// that is proportional to the area it represent. static void VertexAreaUniform(MetroMesh & m, VertexSampler &ps, int sampleNum) { VertexIterator vi; for(vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) (*vi).Q() = 0; FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) { ScalarType areaThird = DoubleArea(*fi)/6.0; (*fi).V(0).Q()+=areaThird; (*fi).V(1).Q()+=areaThird; (*fi).V(2).Q()+=areaThird; } VertexWeighted(m,ps,sampleNum); } static void FillAndShuffleFacePointerVector(MetroMesh & m, std::vector &faceVec) { FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) faceVec.push_back(&*fi); assert((int)faceVec.size()==m.fn); unsigned int (*p_myrandom)(unsigned int) = RandomInt; std::random_shuffle(faceVec.begin(),faceVec.end(), p_myrandom); } static void FillAndShuffleVertexPointerVector(MetroMesh & m, std::vector &vertVec) { VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) vertVec.push_back(&*vi); assert((int)vertVec.size()==m.vn); unsigned int (*p_myrandom)(unsigned int) = RandomInt; std::random_shuffle(vertVec.begin(),vertVec.end(), p_myrandom); } /// Sample the vertices in a uniform way. Each vertex has the same probabiltiy of being chosen. static void VertexUniform(MetroMesh & m, VertexSampler &ps, int sampleNum) { if(sampleNum>=m.vn) { AllVertex(m,ps); return; } std::vector vertVec; FillAndShuffleVertexPointerVector(m,vertVec); for(int i =0; i< sampleNum; ++i) ps.AddVert(*vertVec[i]); } static void FaceUniform(MetroMesh & m, VertexSampler &ps, int sampleNum) { if(sampleNum>=m.fn) { AllFace(m,ps); return; } std::vector faceVec; FillAndShuffleFacePointerVector(m,faceVec); for(int i =0; i< sampleNum; ++i) ps.AddFace(*faceVec[i],Barycenter(*faceVec[i])); } static void AllFace(MetroMesh & m, VertexSampler &ps) { FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { ps.AddFace(*fi,Barycenter(*fi)); } } static void AllEdge(MetroMesh & m, VertexSampler &ps) { // Edge sampling. typedef typename UpdateTopology::PEdge SimpleEdge; std::vector< SimpleEdge > Edges; typename std::vector< SimpleEdge >::iterator ei; UpdateTopology::FillUniqueEdgeVector(m,Edges); for(ei=Edges.begin(); ei!=Edges.end(); ++ei) { Point3f interp(0,0,0); interp[ (*ei).z ]=.5; interp[((*ei).z+1)%3]=.5; ps.AddFace(*(*ei).f,interp); } } // Regular Uniform Edge sampling // Each edge is subdivided in a number of pieces proprtional to its lenght // Sample are choosen without touching the vertices. static void EdgeUniform(MetroMesh & m, VertexSampler &ps,int sampleNum) { typedef typename UpdateTopology::PEdge SimpleEdge; std::vector< SimpleEdge > Edges; UpdateTopology::FillUniqueEdgeVector(m,Edges); // First loop compute total edge lenght; float edgeSum=0; typename std::vector< SimpleEdge >::iterator ei; for(ei=Edges.begin(); ei!=Edges.end(); ++ei) edgeSum+=Distance((*ei).v[0]->P(),(*ei).v[1]->P()); qDebug("Edges %i edge sum %f",Edges.size(),edgeSum); float sampleLen = edgeSum/sampleNum; qDebug("EdgesSamples %i Sampling Len %f",sampleNum,sampleLen); float rest=0; for(ei=Edges.begin(); ei!=Edges.end(); ++ei) { float len = Distance((*ei).v[0]->P(),(*ei).v[1]->P()); float samplePerEdge = floor((len+rest)/sampleLen); rest = (len+rest) - samplePerEdge * sampleLen; float step = 1.0/(samplePerEdge+1); for(int i=0;i 1.0) { interp[1] = 1.0 - interp[1]; interp[2] = 1.0 - interp[2]; } assert(interp[1] + interp[2] <= 1.0); interp[0]=1.0-(interp[1] + interp[2]); return interp; } static void StratifiedMontecarlo(MetroMesh & m, VertexSampler &ps,int sampleNum) { ScalarType area = Stat::ComputeMeshArea(m); ScalarType samplePerAreaUnit = sampleNum/area; //qDebug("samplePerAreaUnit %f",samplePerAreaUnit); // Montecarlo sampling. double floatSampleNum = 0.0; FaceIterator fi; for(fi=m.face.begin(); fi != m.face.end(); fi++) if(!(*fi).IsD()) { // compute # samples in the current face (taking into account of the remainders) floatSampleNum += 0.5*DoubleArea(*fi) * samplePerAreaUnit; int faceSampleNum = (int) floatSampleNum; // for every sample p_i in T... for(int i=0; i < faceSampleNum; i++) ps.AddFace(*fi,RandomBaricentric()); floatSampleNum -= (double) faceSampleNum; } } static void Montecarlo(MetroMesh & m, VertexSampler &ps,int sampleNum) { typedef std::pair IntervalType; std::vector< IntervalType > intervals (m.fn+1); FaceIterator fi; int i=0; intervals[i]=std::make_pair(0,FacePointer(0)); // First loop: build a sequence of consecutive segments proportional to the triangle areas. for(fi=m.face.begin(); fi != m.face.end(); fi++) if(!(*fi).IsD()) { intervals[i+1]=std::make_pair(intervals[i].first+0.5*DoubleArea(*fi), &*fi); ++i; } ScalarType meshArea = intervals.back().first; for(i=0;i::iterator it = lower_bound(intervals.begin(),intervals.end(),std::make_pair(val,FacePointer(0)) ); assert(it != intervals.end()); assert(it != intervals.begin()); assert( (*(it-1)).first = val); ps.AddFace( *(*it).second, RandomBaricentric() ); } } static ScalarType WeightedArea(FaceType f) { ScalarType averageQ = ( f.V(0)->Q() + f.V(1)->Q() + f.V(2)->Q() ) /3.0; return DoubleArea(f)*averageQ/2.0; } /// Compute a sampling of the surface that is weighted by the quality /// the area of each face is multiplied by the average of the quality of the vertices. /// So the a face with a zero quality on all its vertices is never sampled and a face with average quality 2 get twice the samples of a face with the same area but with an average quality of 1; static void WeightedMontecarlo(MetroMesh & m, VertexSampler &ps, int sampleNum) { assert(tri::HasPerVertexQuality(m)); ScalarType weightedArea = 0; FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) weightedArea += WeightedArea(*fi); ScalarType samplePerAreaUnit = sampleNum/weightedArea; //qDebug("samplePerAreaUnit %f",samplePerAreaUnit); // Montecarlo sampling. double floatSampleNum = 0.0; for(fi=m.face.begin(); fi != m.face.end(); fi++) if(!(*fi).IsD()) { // compute # samples in the current face (taking into account of the remainders) floatSampleNum += WeightedArea(*fi) * samplePerAreaUnit; int faceSampleNum = (int) floatSampleNum; // for every sample p_i in T... for(int i=0; i < faceSampleNum; i++) ps.AddFace(*fi,RandomBaricentric()); floatSampleNum -= (double) faceSampleNum; } } // Subdivision sampling of a single face. // return number of added samples static int SingleFaceSubdivision(int sampleNum, const CoordType & v0, const CoordType & v1, const CoordType & v2, VertexSampler &ps, FacePointer fp, bool randSample) { // recursive face subdivision. if(sampleNum == 1) { // ground case. CoordType SamplePoint; if(randSample) { CoordType rb=RandomBaricentric(); SamplePoint=v0*rb[0]+v1*rb[1]+v2*rb[2]; } else SamplePoint=((v0+v1+v2)/3.0f); CoordType SampleBary; InterpolationParameters(*fp,SamplePoint,SampleBary[0],SampleBary[1],SampleBary[2]); ps.AddFace(*fp,SampleBary); return 1; } int s0 = sampleNum /2; int s1 = sampleNum-s0; assert(s0>0); assert(s1>0); ScalarType w0 = ScalarType(s1)/ScalarType(sampleNum); ScalarType w1 = 1.0-w0; // compute the longest edge. double maxd01 = SquaredDistance(v0,v1); double maxd12 = SquaredDistance(v1,v2); double maxd20 = SquaredDistance(v2,v0); int res; if(maxd01 > maxd12) if(maxd01 > maxd20) res = 0; else res = 2; else if(maxd12 > maxd20) res = 1; else res = 2; int faceSampleNum=0; // break the input triangle along the midpoint of the longest edge. CoordType pp; switch(res) { case 0 : pp = v0*w0 + v1*w1; faceSampleNum+=SingleFaceSubdivision(s0,v0,pp,v2,ps,fp,randSample); faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample); break; case 1 : pp = v1*w0 + v2*w1; faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample); faceSampleNum+=SingleFaceSubdivision(s1,v0,pp,v2,ps,fp,randSample); break; case 2 : pp = v0*w0 + v2*w1; faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample); faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample); break; } return faceSampleNum; } /// Compute a sampling of the surface where the points are regularly scattered over the face surface using a recursive longest-edge subdivision rule. static void FaceSubdivision(MetroMesh & m, VertexSampler &ps,int sampleNum, bool randSample) { ScalarType area = Stat::ComputeMeshArea(m); ScalarType samplePerAreaUnit = sampleNum/area; //qDebug("samplePerAreaUnit %f",samplePerAreaUnit); std::vector faceVec; FillAndShuffleFacePointerVector(m,faceVec); double floatSampleNum = 0.0; int faceSampleNum; // Subdivision sampling. typename std::vector::iterator fi; for(fi=faceVec.begin(); fi!=faceVec.end(); fi++) { // compute # samples in the current face. floatSampleNum += 0.5*DoubleArea(**fi) * samplePerAreaUnit; faceSampleNum = (int) floatSampleNum; if(faceSampleNum>0) faceSampleNum = SingleFaceSubdivision(faceSampleNum,(**fi).V(0)->cP(), (**fi).V(1)->cP(), (**fi).V(2)->cP(),ps,*fi,randSample); floatSampleNum -= (double) faceSampleNum; } } // Similar Triangles sampling. // Skip vertex and edges // Sample per edges includes vertexes, so here we should expect n_samples_per_edge >=4 static int SingleFaceSimilar(FacePointer fp, VertexSampler &ps, int n_samples_per_edge) { int n_samples=0; int i, j; float segmentNum=n_samples_per_edge -1 ; float segmentLen = 1.0/segmentNum; // face sampling. for(i=1; i < n_samples_per_edge-1; i++) for(j=1; j < n_samples_per_edge-1-i; j++) { //AddSample( v0 + (V1*(double)i + V2*(double)j) ); CoordType sampleBary(i*segmentLen,j*segmentLen, 1.0 - (i*segmentLen+j*segmentLen) ) ; n_samples++; ps.AddFace(*fp,sampleBary); } return n_samples; } /// Similar sampling. Each triangle is subdivided into similar triangles following a generalization of the classical 1-to-4 splitting rule of triangles. /// According to the level of subdivision you get 1, 4 , 9, 16 , triangles. /// Of these triangles we consider only internal vertices. (to avoid multiple sampling of edges and vertices). /// Therefore the number of internal points is ((k-3)*(k-2))/2. where k is the number of point on an edge (vertex included) // e.g. for a k=4 you get (1*2)/2 == 1 e.g. a single point, etc. /// So if you want N samples in a triangle i have to solve k^2 -5k +6 - 2N = 0 // 5 + sqrt( 1 + 8N ) // k = ------------------- // 2 //template //void Sampling::SimilarFaceSampling() static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum) { ScalarType area = Stat::ComputeMeshArea(m); ScalarType samplePerAreaUnit = sampleNum/area; //qDebug("samplePerAreaUnit %f",samplePerAreaUnit); // Similar Triangles sampling. int n_samples_per_edge; double n_samples_decimal = 0.0; FaceIterator fi; printf("Similar Triangles face sampling\n"); for(fi=m.face.begin(); fi != m.face.end(); fi++) { // compute # samples in the current face. n_samples_decimal += 0.5*DoubleArea(*fi) * samplePerAreaUnit; int n_samples = (int) n_samples_decimal; if(n_samples) { // face sampling. n_samples_per_edge = (int)((sqrt(1.0+8.0*(double)n_samples) +5.0)/2.0); //n_samples = 0; //SingleFaceSimilar((*fi).V(0)->cP(), (*fi).V(1)->cP(), (*fi).V(2)->cP(), n_samples_per_edge); n_samples = SingleFaceSimilar(&*fi,ps, n_samples_per_edge); } n_samples_decimal -= (double) n_samples; } } // Rasterization fuction // Take a triangle // T deve essere una classe funzionale che ha l'operatore () // con due parametri x,y di tipo S esempio: // class Foo { public void operator()(int x, int y ) { ??? } }; static void SingleFaceRaster(FaceType &f, VertexSampler &ps, const Point2 & v0, const Point2 & v1, const Point2 & v2) { typedef ScalarType S; // Calcolo bounding box Box2i bbox; if(v0[0]int(v2[0])) bbox.min[0]=int(v2[0]); else if(bbox.max[0]int(v2[1])) bbox.min[1]=int(v2[1]); else if(bbox.max[1] d10 = v1 - v0; Point2 d21 = v2 - v1; Point2 d02 = v0 - v2; // Preparazione prodotti scalari S b0 = (bbox.min[0]-v0[0])*d10[1] - (bbox.min[1]-v0[1])*d10[0]; S b1 = (bbox.min[0]-v1[0])*d21[1] - (bbox.min[1]-v1[1])*d21[0]; S b2 = (bbox.min[0]-v2[0])*d02[1] - (bbox.min[1]-v2[1])*d02[0]; // Preparazione degli steps S db0 = d10[1]; S db1 = d21[1]; S db2 = d02[1]; // Preparazione segni S dn0 = -d10[0]; S dn1 = -d21[0]; S dn2 = -d02[0]; // Rasterizzazione double de = v0[0]*v1[1]-v0[0]*v2[1]-v1[0]*v0[1]+v1[0]*v2[1]-v2[0]*v1[1]+v2[0]*v0[1]; for(int x=bbox.min[0];x<=bbox.max[0];++x) { bool in = false; S n0 = b0; S n1 = b1; S n2 = b2; for(int y=bbox.min[1];y<=bbox.max[1];++y) { if( (n0>=0 && n1>=0 && n2>=0) || (n0<=0 && n1<=0 && n2<=0) ) { CoordType baryCoord; baryCoord[0] = double(-y*v1[0]+v2[0]*y+v1[1]*x-v2[0]*v1[1]+v1[0]*v2[1]-x*v2[1])/de; baryCoord[1] = -double( x*v0[1]-x*v2[1]-v0[0]*y+v0[0]*v2[1]-v2[0]*v0[1]+v2[0]*y)/de; baryCoord[2] = 1-baryCoord[0]-baryCoord[1]; ps.AddTextureSample(f, baryCoord, Point2i(x,y)); in = true; } else if(in) break; n0 += dn0; n1 += dn1; n2 += dn2; } b0 += db0; b1 += db1; b2 += db2; } } // Generate a random point in volume defined by a box with uniform distribution static CoordType RandomBox(vcg::Box3 box) { CoordType p = box.min; p[0] += box.Dim()[0] * RandomDouble01(); p[1] += box.Dim()[1] * RandomDouble01(); p[2] += box.Dim()[2] * RandomDouble01(); return p; } static bool generatePoissonDiskSample(Point3i *cell, MontecarloSHT & samplepool, vcg::Point3 & p) { MontecarloSHTIterator cellBegin; MontecarloSHTIterator cellEnd; samplepool.Grid(*cell, cellBegin, cellEnd); assert(cellBegin != cellEnd); p = (*cellBegin)->P(); return true; } // check the radius constrain static bool checkPoissonDisk(SampleSHT & sht, Point3 p, ScalarType radius) { SampleSHTIterator itBegin; SampleSHTIterator itEnd; SampleSHTIterator it; // get the samples closest to the given one sht.Grid(p, itBegin, itEnd); VertexType *v; VertexType d; for (it = itBegin; it != itEnd; ++it) { v = *it; if (Distance(v->P(),p) < radius) return false; } return true; } /** Compute a Poisson-disk sampling of the surface. * The radius of the disk is computed according to the estimated sampling density. * * This algorithm is an adaptation of the algorithm of White et al. : * * "Poisson Disk Point Set by Hierarchical Dart Throwing" * K. B. White, D. Cline, P. K. Egbert, * IEEE Symposium on Interactive Ray Tracing, 2007, * 10-12 Sept. 2007, pp. 129-132. */ static void Poissondisk(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &montecarloMesh, int sampleNum) { int cellusedcounter[20]; // cells used for each level int cellstosubdividecounter[20]; // cells to subdivide for each level int samplesgenerated[20]; // samples generated for each level int samplesaccepted[20]; // samples accepted for each level int verticescounter[20]; // vertices added to the spatial hash table for (int i = 0; i < 20; i++) { cellusedcounter[i] = 0; cellstosubdividecounter[i] = 0; samplesgenerated[i] = 0; samplesaccepted[i] = 0; verticescounter[i] = 0; } const int MAXLEVELS = 5; // maximum level of subdivision // spatial index of montecarlo samples - used to choose a new sample to insert MontecarloSHT montecarloSHT; // spatial hash table of the generated samples - used to check the radius constrain SampleSHT checkSHT; // initialize spatial hash table for searching ScalarType meshArea = Stat::ComputeMeshArea(origMesh); ScalarType r = sqrt(meshArea / (0.7 * 3.1415 * sampleNum)); // 0.7 is a density factor ScalarType cellsize = r / (2.0 * sqrt(2.0)); int sizeX = origMesh.bbox.DimX() / cellsize; int sizeY = origMesh.bbox.DimY() / cellsize; int sizeZ = origMesh.bbox.DimZ() / cellsize; Point3i gridsize(sizeX, sizeY, sizeZ); // initialize spatial hash to index pre-generated samples VertexIterator vi; montecarloSHT.InitEmpty(origMesh.bbox, gridsize); for (vi = montecarloMesh.vert.begin(); vi != montecarloMesh.vert.end(); vi++) { montecarloSHT.Add(&(*vi)); verticescounter[0]++; } // initialize spatial hash table for check poisson-disk radius constrain checkSHT.InitEmpty(origMesh.bbox, gridsize); // sampling algorithm // ------------------ // // - generate millions of samples using montecarlo algorithm // - extract a cell (C) from the active cell list (with probability proportional to cell's volume) // - with a probability proportional to the intersection between the surface and the cell // generate a sample inside C by choosing one of the contained pre-generated samples // - if the sample violates the radius constrain discard it, and add the cell to the cells-to-subdivide list // - iterate until the active cell list is empty or a pre-defined number of subdivisions is reached // std::vector activeCells; std::vector nextPoints; typename std::vector::iterator nextPointsIt; typename std::vector::iterator it; Point3i *currentCell; vcg::Box3 currentBox; vcg::Point3 s; // current sample int level = 0; bool validsample; bool acceptedsample; do { // extract a cell (C) from the active cell list (with probability proportional to cell's volume) /////////////////////////////////////////////////////////////////////////////////////////////////// // create active cell list for (it = montecarloSHT.AllocatedCells.begin(); it != montecarloSHT.AllocatedCells.end(); it++) { activeCells.push_back(&(*it)); } // shuffle active cells int ncell = static_cast(activeCells.size()); cellusedcounter[level] = ncell; int index,index2; Point3i *temp; for (int i = 0; i < ncell/2; i++) { index = RandomInt(ncell); index2 = RandomInt(ncell); temp = activeCells[index]; activeCells[index] = activeCells[index2]; activeCells[index2] = temp; } // with a probability proportional to the intersection between the surface and the cell // generate a sample inside C and project it on the mesh ////////////////////////////////////////////////////////////////////////////////////////// for (int i = 0; i < ncell; i++) { currentCell = activeCells[i]; // generate a sample chosen from the pre-generated one validsample = generatePoissonDiskSample(currentCell, montecarloSHT, s); samplesgenerated[level]++; if (validsample) { // sample is valid acceptedsample = checkPoissonDisk(checkSHT, s, r); } else { acceptedsample = false; } if (acceptedsample) { // add sample VertexType *v = new VertexType; v->P() = s; ps.AddVert(*v); // add to control spatial index checkSHT.Add(v); samplesaccepted[level]++; } else { // subdivide this cell /////////////////////////////////////////////////////////////////////// // pre-generated samples for the next level of subdivision MontecarloSHTIterator ptBegin; MontecarloSHTIterator ptEnd; MontecarloSHTIterator ptIt; montecarloSHT.Grid(*currentCell, ptBegin, ptEnd); for (ptIt = ptBegin; ptIt != ptEnd; ptIt++) { nextPoints.push_back(*ptIt); } cellstosubdividecounter[level]++; } } activeCells.clear(); // proceed to the next level of subdivision /////////////////////////////////////////////////////////////////////////// // cleaning spatial index data structures montecarloSHT.Clear(); // increase grid resolution gridsize[0] *= 2; gridsize[1] *= 2; gridsize[2] *= 2; montecarloSHT.InitEmpty(montecarloMesh.bbox, gridsize); for (nextPointsIt = nextPoints.begin(); nextPointsIt != nextPoints.end(); nextPointsIt++) { montecarloSHT.Add(*nextPointsIt); verticescounter[level+1]++; } nextPoints.clear(); level++; } while(level < MAXLEVELS); // write some statistics QFile data("C:/temp/poissondisk_statistics.txt"); if (data.open(QFile::WriteOnly | QFile::Truncate)) { QTextStream out(&data); for (int k = 0; k < MAXLEVELS; k++) out << "Cells used for level " << k << ": " << cellusedcounter[k] << endl; for (int k = 0; k < MAXLEVELS; k++) out << "Cells to subdivide for level " << k << ": " << cellstosubdividecounter[k] << endl; for (int k = 0; k < MAXLEVELS; k++) out << "Vertices counter for level " << k << ": " << verticescounter[k] << endl; for (int k = 0; k < MAXLEVELS; k++) out << "Samples generated for level " << k << ": " << samplesgenerated[k] << endl; for (int k = 0; k < MAXLEVELS; k++) out << "Samples accepted for level " << k << ": " << samplesaccepted[k] << endl; } } //template //void Sampling::SimilarFaceSampling() static void Texture(MetroMesh & m, VertexSampler &ps, int textureWidth, int textureHeight) { FaceIterator fi; printf("Similar Triangles face sampling\n"); for(fi=m.face.begin(); fi != m.face.end(); fi++) { Point2f ti[3]; for(int i=0;i<3;++i) ti[i]=Point2f((*fi).WT(i).U() * textureWidth, (*fi).WT(i).V() * textureHeight); SingleFaceRaster(*fi, ps, ti[0],ti[1],ti[2]); } } }; // end class } // end namespace tri } // end namespace vcg #endif