/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef _AUTOALIGN_4PCS_H_ #define _AUTOALIGN_4PCS_H_ /** implementation of the 4PCS method from the paper: "4-Points Congruent Sets for Robust Pairwise Surface Registration" D.Aiger, N.Mitra D.Cohen-Or, SIGGRAPH 2008 ps: the name of the variables are out of vcg standard but like the one used in the paper pseudocode. */ #include #include #include #include // note: temporary (callback.h should be moved inside vcg) typedef bool AACb( const int pos,const char * str ); namespace vcg{ namespace tri{ template class FourPCS { public: /* mesh only for using spatial indexing functions (to remove) */ class PVertex; // dummy prototype never used class PFace; class PUsedTypes: public vcg::UsedTypes < vcg::Use::template AsVertexType, vcg::Use::template AsFaceType >{}; class PVertex : public vcg::Vertex< PUsedTypes,vcg::vertex::BitFlags,vcg::vertex::Coord3f ,vcg::vertex::Mark>{}; class PFace : public vcg::Face< PUsedTypes> {}; class PMesh : public vcg::tri::TriMesh< std::vector, std::vector > {}; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::CoordType CoordType; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::VertexType VertexType; typedef vcg::Point4< vcg::Point3 > FourPoints; typedef vcg::GridStaticPtr GridType; /* class for Parameters */ struct Param { ScalarType delta; // Approximation Level int feetsize; // how many points in the neighborhood of each of the 4 points ScalarType f; // overlap estimation as a percentage int scoreFeet; // how many of the feetsize points must match (max feetsize*4) to try an early interrupt int scoreAln; // how good must be the alignement to end the process successfully void Default(){ delta = 0.5; feetsize = 25; f = 0.5; scoreFeet = 50; scoreAln = 200; } }; Param par; /// parameters public: void Init(MeshType &_P,MeshType &_Q); bool Align( int L, vcg::Matrix44f & result, vcg::CallBackPos * cb = NULL ); // main function private: struct Couple: public std::pair { Couple(const int & i, const int & j, float d):std::pair(i,j),dist(d){} Couple(float d):std::pair(0,0),dist(d){} float dist; const bool operator < (const Couple & o) const {return dist < o.dist;} int & operator[](const int &i){return (i==0)? first : second;} }; /* returns the closest point between to segments x1-x2 and x3-x4. */ void IntersectionLineLine(const CoordType & x1,const CoordType & x2,const CoordType & x3,const CoordType & x4, CoordType&x) { CoordType a = x2-x1, b = x4-x3, c = x3-x1; x = x1 + a * ((c^b).dot(a^b)) / (a^b).SquaredNorm(); } struct Candidate { Candidate(){} Candidate(FourPoints _p,vcg::Matrix44_T):p(_p),T(_T){} FourPoints p; vcg::Matrix44 T; ScalarType err; int score; int base; // debug: for which base inline bool operator <(const Candidate & o) const {return score > o.score;} }; MeshType *P; // mesh from which the coplanar base is selected MeshType *Q; // mesh where to find the correspondences std::vector mapsub; // subset of index to the vertices in Q PMesh Invr; // invariants std::vector< Candidate > U; Candidate winner; int iwinner; // winner == U[iwinner] FourPoints B; // coplanar base std::vector bases; // used bases ScalarType side; // side std::vector ExtB[4]; // selection of vertices "close" to the four point std::vector subsetP; // random selection on P ScalarType radius; ScalarType Bangle; std::vector R1/*,R2*/; ScalarType r1,r2; // class for the point 'ei' struct EPoint{ EPoint(vcg::Point3 _p, int _i):pos(_p),pi(_i){} vcg::Point3 pos; int pi; //index to R[1|2] void GetBBox(vcg::Box3 & b){b.Add(pos);} }; GridType *ugrid; // griglia vcg::GridStaticPtr ugridQ; vcg::GridStaticPtr ugridP; bool SelectCoplanarBase(); // on P bool FindCongruent() ; // of base B, on Q, with approximation delta void ComputeR1R2(ScalarType d1,ScalarType d2); bool IsTransfCongruent(FourPoints fp,vcg::Matrix44 & mat, float & trerr); int EvaluateSample(Candidate & fp, CoordType & tp, CoordType & np, const float & angle); void EvaluateAlignment(Candidate & fp); void TestAlignment(Candidate & fp); /* debug tools */ public: std::vector allTr;// tutte le trasformazioni provate FILE * db; char namemesh1[255],namemesh2[255]; int n_base; void InitDebug(const char * name1, const char * name2){ db = fopen("debugPCS.txt","w"); sprintf(&namemesh1[0],"%s",name1); sprintf(&namemesh2[0],"%s",name2); n_base = 0; } void FinishDebug(){ fclose(db); } //void SaveALN(char * name,vcg::Matrix44f mat ){ // FILE * o = fopen(name,"w"); // fprintf(o,"2\n%s\n#\n",namemesh1); // for(int i = 0 ; i < 4; ++i) // fprintf(o,"%f %f %f %f\n",mat[i][0],mat[i][1],mat[i][2],mat[i][3]); // fprintf(o,"%s\n#\n",namemesh2); // fprintf(o,"1.0 0.0 0.0 0.0 \n"); // fprintf(o,"0.0 1.0 0.0 0.0 \n"); // fprintf(o,"0.0 0.0 1.0 0.0 \n"); // fprintf(o,"0.0 0.0 0.0 1.0 \n"); // fclose(o); //} }; template void FourPCS:: Init(MeshType &_P,MeshType &_Q) { P = &_P;Q=&_Q; ugridQ.Set(Q->vert.begin(),Q->vert.end()); ugridP.Set(P->vert.begin(),P->vert.end()); float ratio = 800 / (float) Q->vert.size(); for(int vi = 0; vi < Q->vert.size(); ++vi) if(rand()/(float) RAND_MAX < ratio) mapsub.push_back(vi); for(int vi = 0; vi < P->vert.size(); ++vi) if(rand()/(float) RAND_MAX < ratio) subsetP.push_back(&P->vert[vi]); // estimate neigh distance float avD = 0.0; for(int i = 0 ; i < 100; ++i){ int ri = rand()/(float) RAND_MAX * Q->vert.size() -1; std::vector< CoordType > samples,d_samples; std::vector dists; std::vector ress; vcg::tri::GetKClosestVertex< MeshType, vcg::GridStaticPtr, std::vector, std::vector, std::vector< CoordType > >(*Q,ugridQ,2,Q->vert[ri].cP(),Q->bbox.Diag(), ress,dists, samples); assert(ress.size() == 2); avD+=dists[1]; } avD /=100; // average vertex-vertex distance avD /= sqrt(ratio); // take into account the ratio par.delta = avD * par.delta; side = P->bbox.Dim()[P->bbox.MaxDim()]*par.f; //rough implementation } template bool FourPCS::SelectCoplanarBase(){ vcg::tri::UpdateBounding::Box(*P); // choose the inter point distance ScalarType dtol = side*0.1; //rough implementation //choose the first two points int i = 0,ch; // first point random ch = (rand()/(float)RAND_MAX)*(P->vert.size()-2); B[0] = P->vert[ch].P(); //printf("B[0] %d\n",ch); // second a point at distance d+-dtol for(i = 0; i < P->vert.size(); ++i){ ScalarType dd = (P->vert[i].P() - B[0]).Norm(); if( ( dd < side + dtol) && (dd > side - dtol)){ B[1] = P->vert[i].P(); //printf("B[1] %d\n",i); break; } } if(i == P->vert.size()) return false; // third point at distance d from B[1] and forming a right angle int best = -1; ScalarType bestv=std::numeric_limits::max(); for(i = 0; i < P->vert.size(); ++i){ int id = rand()/(float)RAND_MAX * (P->vert.size()-1); ScalarType dd = (P->vert[id].P() - B[1]).Norm(); if( ( dd < side + dtol) && (dd > side - dtol)){ ScalarType angle = fabs( ( P->vert[id].P()-B[1]).normalized().dot((B[1]-B[0]).normalized())); if( angle < bestv){ bestv = angle; best = id; } } } if(best == -1) return false; B[2] = P->vert[best].P(); //printf("B[2] %d\n",best); CoordType n = ((B[0]-B[1]).normalized() ^ (B[2]-B[1]).normalized()).normalized(); CoordType B4 = B[1] + (B[0]-B[1]) + (B[2]-B[1]); VertexType * v =0; ScalarType radius = dtol*4.0; std::vector closests; std::vector distances; std::vector points; vcg::tri::GetInSphereVertex< MeshType, vcg::GridStaticPtr, std::vector, std::vector, std::vector >(*P,ugridP,B4,radius,closests,distances,points); if(closests.empty()) return false; best = -1; bestv=std::numeric_limits::max(); for(i = 0; i P() - B[1]).normalized().dot(n)); if( angle < bestv){ bestv = angle; best = i; } } B[3] = closests[best]->P(); //printf("B[3] %d\n", (typename MeshType::VertexType*)closests[best] - &(*P->vert.begin())); // compute r1 and r2 CoordType x; std::swap(B[1],B[2]); IntersectionLineLine(B[0],B[1],B[2],B[3],x); r1 = (x - B[0]).dot(B[1]-B[0]) / (B[1]-B[0]).SquaredNorm(); r2 = (x - B[2]).dot(B[3]-B[2]) / (B[3]-B[2]).SquaredNorm(); if( ((B[0]+(B[1]-B[0])*r1)-(B[2]+(B[3]-B[2])*r2)).Norm() > par.delta ) return false; radius =side*0.5; std::vector< CoordType > samples,d_samples; std::vector dists; for(int i = 0 ; i< 4; ++i){ vcg::tri::GetKClosestVertex< MeshType, vcg::GridStaticPtr, std::vector, std::vector, std::vector< CoordType > >(*P,ugridP, par.feetsize ,B[i],radius, ExtB[i],dists, samples); } //for(int i = 0 ; i< 4; ++i) // printf("%d ",ExtB[i].size()); // printf("\n"); return true; } template bool FourPCS::IsTransfCongruent(FourPoints fp, vcg::Matrix44 & mat, float & trerr){ std::vector > fix; std::vector > mov; for(int i = 0 ; i < 4; ++i) mov.push_back(B[i]); for(int i = 0 ; i < 4; ++i) fix.push_back(fp[i]); vcg::Point3 n,p; n = (( B[1]-B[0]).normalized() ^ ( B[2]- B[0]).normalized())*( B[1]- B[0]).Norm(); p = B[0] + n; mov.push_back(p); n = (( fp[1]-fp[0]).normalized() ^ (fp[2]- fp[0]).normalized())*( fp[1]- fp[0]).Norm(); p = fp[0] + n; fix.push_back(p); vcg::ComputeRigidMatchMatrix(fix,mov,mat); ScalarType err = 0.0; for(int i = 0; i < 4; ++i) err+= (mat * mov[i] - fix[i]).SquaredNorm(); trerr = vcg::math::Sqrt(err); return err < par.delta* par.delta*4.0; } template void FourPCS::ComputeR1R2(ScalarType d1,ScalarType d2){ int vi,vj; R1.clear(); //R2.clear(); int start = clock(); for(vi = 0; vi < mapsub.size(); ++vi) for(vj = vi; vj < mapsub.size(); ++vj){ ScalarType d = ((Q->vert[mapsub[vi]]).P()-(Q->vert[mapsub[vj]]).P()).Norm(); if( (d < d1+ side*0.5) && (d > d1-side*0.5)) { R1.push_back(Couple(mapsub[vi],mapsub[vj],d )); R1.push_back(Couple(mapsub[vj],mapsub[vi],d)); } } //for( vi = 0; vi < mapsub.size(); ++ vi ) for( vj = vi ; vj < mapsub.size(); ++ vj ){ // ScalarType d = ((Q->vert[mapsub[vi]]).P()-(Q->vert[mapsub[vj]]).P()).Norm(); // if( (d < d2+side*0.5) && (d > d2-side*0.5)) // { // R2.push_back(Couple(mapsub[vi],mapsub[vj],d)); // R2.push_back(Couple(mapsub[vj],mapsub[vi],d)); // } //} std::sort(R1.begin(),R1.end()); // std::sort(R2.begin(),R2.end()); } template bool FourPCS::FindCongruent() { // of base B, on Q, with approximation delta bool done = false; std::vector R2inv; int n_closests = 0, n_congr = 0; int ac =0 ,acf = 0,tr = 0,trf =0; ScalarType d1,d2; d1 = (B[1]-B[0]).Norm(); d2 = (B[3]-B[2]).Norm(); int start = clock(); //int vi,vj; typename PMesh::VertexIterator vii; typename std::vector::iterator bR1,eR1,bR2,eR2,ite,cite; bR1 = std::lower_bound::iterator,Couple>(R1.begin(),R1.end(),Couple(d1-par.delta*2.0)); eR1 = std::lower_bound::iterator,Couple>(R1.begin(),R1.end(),Couple(d1+par.delta*2.0)); bR2 = std::lower_bound::iterator,Couple>(R1.begin(),R1.end(),Couple(d2-par.delta*2.0)); eR2 = std::lower_bound::iterator,Couple>(R1.begin(),R1.end(),Couple(d2+par.delta*2.0)); // in [bR1,eR1) there are all the pairs ad a distance d1 +- par.delta // in [bR1,eR1) there are all the pairs ad a distance d2 +- par.delta if(bR1 == R1.end()) return false;// if there are no such pairs return if(bR2 == R1.end()) return false; // if there are no such pairs return // put [bR1,eR1) in a mesh to have the search operator for free (lazy me) Invr.Clear(); int i = &(*bR1)-&(*R1.begin()); for(ite = bR1; ite != eR1;++ite){ vii = vcg::tri::Allocator::AddVertices(Invr,1); (*vii).P() = Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r1; ++i; } if(Invr.vert.empty() ) return false; // index remaps a vertex of Invr to its corresponding point in R1 typename PMesh::template PerVertexAttributeHandle id = vcg::tri::Allocator::template AddPerVertexAttribute(Invr,std::string("index")); i = &(*bR1)-&(*R1.begin()); for(vii = Invr.vert.begin(); vii != Invr.vert.end();++vii,++i) id[vii] = i; vcg::tri::UpdateBounding::Box(Invr); // printf("Invr size %d\n",Invr.vn); ugrid = new GridType(); ugrid->Set(Invr.vert.begin(),Invr.vert.end()); i = &(*bR2)-&(*R1.begin()); // R2inv contains all the points generated by the couples in R2 (with the reference to remap into R2) for(ite = bR2; ite != eR2;++ite){ R2inv.push_back( EPoint( Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r2,i)); ++i; } n_closests = 0; n_congr = 0; ac =0 ; acf = 0; tr = 0; trf = 0; printf("R2Inv.size = %d \n",R2inv.size()); for(uint i = 0 ; i < R2inv.size() ; ++i){ std::vector closests; // for each point in R2inv get all the points in R1 closer than par.delta vcg::Matrix44 mat; vcg::Box3f bb; bb.Add(R2inv[i].pos+vcg::Point3f(par.delta * 0.1,par.delta * 0.1 , par.delta * 0.1 )); bb.Add(R2inv[i].pos-vcg::Point3f(par.delta * 0.1,par.delta* 0.1 , par.delta* 0.1)); vcg::tri::GetInBoxVertex > (Invr,*ugrid,bb,closests); n_closests+=closests.size(); for(uint ip = 0; ip < closests.size(); ++ip){ FourPoints p; p[0] = Q->vert[R1[id[closests[ip]]][0]].P(); p[1] = Q->vert[R1[id[closests[ip]]][1]].P(); p[2] = Q->vert[R1[ R2inv[i].pi][0]].P(); p[3] = Q->vert[R1[ R2inv[i].pi][1]].P(); float trerr; n_base++; if(!IsTransfCongruent(p,mat,trerr)) { trf++; //char name[255]; //sprintf(name,"faileTR_%d_%f.aln",n_base,trerr); //fprintf(db,"TransCongruent %s\n", name); //SaveALN(name, mat); } else{ tr++; n_congr++; U.push_back(Candidate(p,mat)); EvaluateAlignment(U.back()); U.back().base = bases.size()-1; if( U.back().score > par.scoreFeet){ TestAlignment(U.back()); if(U.back().score > par.scoreAln) { done = true; break; } } //char name[255]; //sprintf(name,"passed_score_%5d_%d.aln",U.back().score,n_base); //fprintf(db,"OK TransCongruent %s, score: %d \n", name,U.back().score); //SaveALN(name, mat); } } } delete ugrid; vcg::tri::Allocator::DeletePerVertexAttribute(Invr,id); printf("n_closests %5d = (An %5d ) + ( Tr %5d ) + (OK) %5d\n",n_closests,acf,trf,n_congr); return done; // printf("done n_closests %d congr %d in %f s\n ",n_closests,n_congr,(clock()-start)/(float)CLOCKS_PER_SEC); // printf("angle:%d %d, trasf %d %d\n",ac,acf,tr,trf); } template int FourPCS::EvaluateSample(Candidate & fp, CoordType & tp, CoordType & np, const float & cosAngle) { VertexType* v; ScalarType dist ; radius = par.delta; tp = fp.T * tp; vcg::Point4 np4; np4 = fp.T * vcg::Point4(np[0],np[1],np[2],0.0); np[0] = np4[0]; np[1] = np4[1]; np[2] = np4[2]; v = 0; //v = vcg::tri::GetClosestVertex< // MeshType, // vcg::GridStaticPtr // >(*Q,ugridQ,tp,radius, dist ); typename MeshType::VertexType vq; vq.P() = tp; vq.N() = np; v = vcg::tri::GetClosestVertexNormal< MeshType, vcg::GridStaticPtr >(*Q,ugridQ,vq,radius, dist ); if(v!=0) if( v->N().dot(np) - cosAngle >0) return 1; else return -1; } template void FourPCS::EvaluateAlignment(Candidate & fp){ int n_delta_close = 0; for(int i = 0 ; i< 4; ++i) { for(uint j = 0; j < ExtB[i].size();++j){ CoordType np = ExtB[i][j]->cN();; CoordType tp = ExtB[i][j]->P(); n_delta_close+=EvaluateSample(fp,tp,np,0.9); } } fp.score = n_delta_close; } template void FourPCS::TestAlignment(Candidate & fp){ radius = par.delta; int n_delta_close = 0; for(uint j = 0; j < subsetP.size();++j){ CoordType np = subsetP[j]->N(); CoordType tp = subsetP[j]->P(); n_delta_close+=EvaluateSample(fp,tp,np,0.6); } fp.score = n_delta_close; } template bool FourPCS:: Align( int L, vcg::Matrix44f & result, vcg::CallBackPos * cb ){ // main loop int bestv = 0; bool found; int n_tries = 0; U.clear(); if(L==0) { L = (log(1.0-0.9999) / log(1.0-pow((float)par.f,3.f)))+1; printf("using %d bases\n",L); } ComputeR1R2(side*1.4,side*1.4); for(int t = 0; t < L; ++t ){ do{ n_tries = 0; do{ n_tries++; found = SelectCoplanarBase(); } while(!found && (n_tries <50)); if(!found) { par.f*=0.98; side = P->bbox.Dim()[P->bbox.MaxDim()]*par.f; //rough implementation ComputeR1R2(side*1.4,side*1.4); } } while (!found && (par.f >0.1)); if(par.f <0.1) { printf("FAILED"); return false; } bases.push_back(B); if(cb) cb(t*100/L,"trying bases"); if(FindCongruent()) break; } if(U.empty()) return false; std::sort(U.begin(),U.end()); bestv = -std::numeric_limits::max(); iwinner = 0; for(int i = 0 ; i < U.size() ;++i) { TestAlignment(U[i]); if(U[i].score > bestv){ bestv = U[i].score; iwinner = i; } } printf("Best score: %d \n", bestv); winner = U[iwinner]; result = winner.T; // deallocations Invr.Clear(); return true; } } // namespace tri } // namespace vcg #endif