/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /* OCF = Optional Component Fast (hopefully) compare with OCC(Optional Component Compact) */ #ifndef __VCG_MESH #error "This file should not be included alone. It is automatically included by complex.h" #endif #ifndef __VCG_VERTEX_PLUS_COMPONENT_OCF #define __VCG_VERTEX_PLUS_COMPONENT_OCF #ifndef __VCG_MESH #error "This file should not be included alone. It is automatically included by complex.h" #endif namespace vcg { namespace vertex { /* All the Components that can be added to a vertex should be defined in the namespace vert: */ template class vector_ocf: public std::vector { typedef std::vector BaseType; typedef typename vector_ocf::iterator ThisTypeIterator; public: vector_ocf():std::vector() { ColorEnabled = false; CurvatureEnabled = false; CurvatureDirEnabled = false; MarkEnabled = false; NormalEnabled = false; QualityEnabled = false; RadiusEnabled = false; TexCoordEnabled = false; VFAdjacencyEnabled = false; } //////////////////////////////////////// // All the standard methods of std::vector that can change the reallocation are // redefined in order to manage the additional data. void push_back(const VALUE_TYPE & v) { BaseType::push_back(v); BaseType::back()._ovp = this; if (ColorEnabled) CV.push_back(vcg::Color4b(vcg::Color4b::White)); if (QualityEnabled) QV.push_back(0); if (MarkEnabled) MV.push_back(0); if (NormalEnabled) NV.push_back(typename VALUE_TYPE::NormalType()); if (TexCoordEnabled) TV.push_back(typename VALUE_TYPE::TexCoordType()); if (VFAdjacencyEnabled) AV.push_back(VFAdjType()); if (CurvatureEnabled) CuV.push_back(typename VALUE_TYPE::CurvatureType()); if (CurvatureDirEnabled) CuDV.push_back(typename VALUE_TYPE::CurvatureDirType()); if (RadiusEnabled) RadiusV.push_back(typename VALUE_TYPE::RadiusType()); } void pop_back(); void resize(const unsigned int & _size) { const unsigned int oldsize = BaseType::size(); BaseType::resize(_size); if(oldsize<_size){ ThisTypeIterator firstnew = BaseType::begin(); advance(firstnew,oldsize); _updateOVP(firstnew,(*this).end()); } if (ColorEnabled) CV.resize(_size); if (QualityEnabled) QV.resize(_size,0); if (MarkEnabled) MV.resize(_size); if (NormalEnabled) NV.resize(_size); if (TexCoordEnabled) TV.resize(_size); if (VFAdjacencyEnabled) AV.resize(_size); if (CurvatureEnabled) CuV.resize(_size); if (CurvatureDirEnabled) CuDV.resize(_size); if (RadiusEnabled) RadiusV.resize(_size); } void reserve(const unsigned int & _size) { BaseType::reserve(_size); if (ColorEnabled) CV.reserve(_size); if (QualityEnabled) QV.reserve(_size); if (MarkEnabled) MV.reserve(_size); if (NormalEnabled) NV.reserve(_size); if (TexCoordEnabled) TV.reserve(_size); if (VFAdjacencyEnabled) AV.reserve(_size); if (CurvatureEnabled) CuV.reserve(_size); if (CurvatureDirEnabled) CuDV.reserve(_size); if (RadiusEnabled) RadiusV.reserve(_size); } void _updateOVP(ThisTypeIterator lbegin, ThisTypeIterator lend) { ThisTypeIterator vi; for(vi=lbegin;vi!=lend;++vi) (*vi)._ovp=this; } //////////////////////////////////////// // Enabling Eunctions bool IsQualityEnabled() const {return QualityEnabled;} void EnableQuality() { assert(VALUE_TYPE::HasQualityOcf()); QualityEnabled=true; QV.resize((*this).size(),0); } void DisableQuality() { assert(VALUE_TYPE::HasQualityOcf()); QualityEnabled=false; QV.clear(); } bool IsColorEnabled() const {return ColorEnabled;} void EnableColor() { assert(VALUE_TYPE::HasColorOcf()); ColorEnabled=true; CV.resize((*this).size()); } void DisableColor() { assert(VALUE_TYPE::HasColorOcf()); ColorEnabled=false; CV.clear(); } bool IsMarkEnabled() const {return MarkEnabled;} void EnableMark() { assert(VALUE_TYPE::HasMarkOcf()); MarkEnabled=true; MV.resize((*this).size(),0); } void DisableMark() { assert(VALUE_TYPE::HasMarkOcf()); MarkEnabled=false; MV.clear(); } bool IsNormalEnabled() const {return NormalEnabled;} void EnableNormal() { assert(VALUE_TYPE::HasNormalOcf()); NormalEnabled=true; NV.resize((*this).size()); } void DisableNormal() { assert(VALUE_TYPE::HasNormalOcf()); NormalEnabled=false; NV.clear(); } bool IsVFAdjacencyEnabled() const {return VFAdjacencyEnabled;} void EnableVFAdjacency() { assert(VALUE_TYPE::HasVFAdjacencyOcf()); VFAdjacencyEnabled=true; VFAdjType zero; zero._fp=0; zero._zp=-1; AV.resize((*this).size(),zero); } void DisableVFAdjacency() { assert(VALUE_TYPE::HasVFAdjacencyOcf()); VFAdjacencyEnabled=false; AV.clear(); } bool IsCurvatureEnabled() const {return CurvatureEnabled;} void EnableCurvature() { assert(VALUE_TYPE::HasCurvatureOcf()); CurvatureEnabled=true; CuV.resize((*this).size()); } void DisableCurvature() { assert(VALUE_TYPE::HasCurvatureOcf()); CurvatureEnabled=false; CuV.clear(); } bool IsCurvatureDirEnabled() const {return CurvatureDirEnabled;} void EnableCurvatureDir() { assert(VALUE_TYPE::HasCurvatureDirOcf()); CurvatureDirEnabled=true; CuDV.resize((*this).size()); } void DisableCurvatureDir() { assert(VALUE_TYPE::HasCurvatureDirOcf()); CurvatureDirEnabled=false; CuDV.clear(); } bool IsRadiusEnabled() const {return RadiusEnabled;} void EnableRadius() { assert(VALUE_TYPE::HasRadiusOcf()); RadiusEnabled=true; RadiusV.resize((*this).size()); } void DisableRadius() { assert(VALUE_TYPE::HasRadiusOcf()); RadiusEnabled=false; RadiusV.clear(); } bool IsTexCoordEnabled() const {return TexCoordEnabled;} void EnableTexCoord() { assert(VALUE_TYPE::HasTexCoordOcf()); TexCoordEnabled=true; TV.resize((*this).size()); } void DisableTexCoord() { assert(VALUE_TYPE::HasTexCoordOcf()); TexCoordEnabled=false; TV.clear(); } struct VFAdjType { typename VALUE_TYPE::FacePointer _fp ; int _zp ; }; public: std::vector CV; std::vector CuV; std::vector CuDV; std::vector MV; std::vector NV; std::vector QV; std::vector RadiusV; std::vector TV; std::vector AV; bool ColorEnabled; bool CurvatureEnabled; bool CurvatureDirEnabled; bool MarkEnabled; bool NormalEnabled; bool QualityEnabled; bool RadiusEnabled; bool TexCoordEnabled; bool VFAdjacencyEnabled; }; //template<> void EnableAttribute(){ NormalEnabled=true;} /*------------------------- COORD -----------------------------------------*/ /*----------------------------- VFADJ ------------------------------*/ template class VFAdjOcf: public T { public: typename T::FacePointer &VFp() { assert((*this).Base().VFAdjacencyEnabled); return (*this).Base().AV[(*this).Index()]._fp; } typename T::FacePointer cVFp() const { if(! (*this).Base().VFAdjacencyEnabled ) return 0; else return (*this).Base().AV[(*this).Index()]._fp; } int &VFi() { assert((*this).Base().VFAdjacencyEnabled); return (*this).Base().AV[(*this).Index()]._zp; } int cVFi() const { if(! (*this).Base().VFAdjacencyEnabled ) return -1; return (*this).Base().AV[(*this).Index()]._zp; } template void ImportData(const RightVertexType & rightV) { T::ImportData(rightV); } static bool HasVFAdjacency() { return true; } static bool HasVFAdjacencyOcf() { return true; } bool IsVFAdjacencyEnabled(const typename T::VertexType *vp) {return vp->Base().VFAdjacencyEnabled;} static void Name(std::vector & name){name.push_back(std::string("VFAdjOcf"));T::Name(name);} private: }; /*------------------------- Normal -----------------------------------------*/ template class NormalOcf: public T { public: typedef A NormalType; inline bool IsNormalEnabled( ) const { return this->Base().IsNormalEnabled(); } static bool HasNormal() { return true; } static bool HasNormalOcf() { return true; } const NormalType &N() const { assert((*this).Base().NormalEnabled); return (*this).Base().NV[(*this).Index()]; } NormalType &N() { assert((*this).Base().NormalEnabled); return (*this).Base().NV[(*this).Index()]; } NormalType cN() const { assert((*this).Base().NormalEnabled); return (*this).Base().NV[(*this).Index()]; } template void ImportData(const RightVertexType & rightV){ if((*this).IsNormalEnabled() && rightV.IsNormalEnabled() ) N().Import(rightV.cN()); T::ImportData(rightV);} }; template class Normal3sOcf: public NormalOcf {public: static void Name(std::vector & name){name.push_back(std::string("Normal3sOcf"));T::Name(name);}}; template class Normal3fOcf: public NormalOcf {public: static void Name(std::vector & name){name.push_back(std::string("Normal3fOcf"));T::Name(name);}}; template class Normal3dOcf: public NormalOcf {public: static void Name(std::vector & name){name.push_back(std::string("Normal3dOcf"));T::Name(name);}}; ///*-------------------------- COLOR ----------------------------------*/ template class ColorOcf: public T { public: typedef A ColorType; const ColorType &C() const { assert((*this).Base().ColorEnabled); return (*this).Base().CV[(*this).Index()]; } ColorType &C() { assert((*this).Base().ColorEnabled); return (*this).Base().CV[(*this).Index()]; } ColorType cC() const { assert((*this).Base().ColorEnabled); return (*this).Base().CV[(*this).Index()]; } template void ImportData(const RightVertexType & rightV) { if((*this).IsColorEnabled() && rightV.IsColorEnabled() ) C() = rightV.cC(); T::ImportData(rightV); } inline bool IsColorEnabled() const { return this->Base().IsColorEnabled();} static bool HasColor() { return true; } static bool HasColorOcf() { assert(!T::HasColorOcf()); return true; } }; template class Color4bOcf: public ColorOcf { public: static void Name(std::vector & name){name.push_back(std::string("Color4bOcf"));T::Name(name);} }; ///*-------------------------- QUALITY ----------------------------------*/ template class QualityOcf: public T { public: typedef A QualityType; const QualityType &Q() const { assert((*this).Base().QualityEnabled); return (*this).Base().QV[(*this).Index()]; } QualityType &Q() { assert((*this).Base().QualityEnabled); return (*this).Base().QV[(*this).Index()]; } QualityType cQ() const { assert((*this).Base().QualityEnabled); return (*this).Base().QV[(*this).Index()]; } template void ImportData(const RightVertexType & rightV) { if((*this).IsQualityEnabled() && rightV.IsQualityEnabled() ) // copy the data only if they are enabled in both vertices Q() = rightV.cQ(); T::ImportData(rightV); } inline bool IsQualityEnabled( ) const { return this->Base().IsQualityEnabled(); } static bool HasQuality() { return true; } static bool HasQualityOcf() { assert(!T::HasQualityOcf()); return true; } }; template class QualityfOcf: public QualityOcf { public: static void Name(std::vector & name){name.push_back(std::string("QualityfOcf"));T::Name(name);} }; ///*-------------------------- TEXTURE ----------------------------------*/ template class TexCoordOcf: public TT { public: typedef A TexCoordType; const TexCoordType &T() const { assert((*this).Base().TexCoordEnabled); return (*this).Base().TV[(*this).Index()]; } TexCoordType &T() { assert((*this).Base().TexCoordEnabled); return (*this).Base().TV[(*this).Index()]; } TexCoordType cT() const { assert((*this).Base().TexCoordEnabled); return (*this).Base().TV[(*this).Index()]; } template < class RightVertexType> void ImportData(const RightVertexType & rightV) { if((*this).IsTexCoordEnabled() && rightV.IsTexCoordEnabled()) // copy the data only if they are enabled in both vertices T() = rightV.cT(); TT::ImportData(rightV); } inline bool IsTexCoordEnabled( ) const { return this->Base().IsTexCoordEnabled(); } static bool HasTexCoord() { return true; } static bool HasTexCoordOcf() { assert(!TT::HasTexCoordOcf()); return true; } }; template class TexCoordfOcf: public TexCoordOcf, T> { public: static void Name(std::vector & name){name.push_back(std::string("TexCoordfOcf"));T::Name(name);} }; ///*-------------------------- MARK ----------------------------------*/ template class MarkOcf: public T { public: typedef int MarkType; inline const int &IMark() const { assert((*this).Base().MarkEnabled); return (*this).Base().MV[(*this).Index()]; } inline int &IMark() { assert((*this).Base().MarkEnabled); return (*this).Base().MV[(*this).Index()]; } inline int cIMark() const { assert((*this).Base().MarkEnabled); return (*this).Base().MV[(*this).Index()]; } template void ImportData(const RightVertexType & rightV) { if((*this).IsMarkEnabled() && rightV.IsMarkEnabled()) // copy the data only if they are enabled in both vertices IMark() = rightV.cIMark(); T::ImportData(rightV); } inline bool IsMarkEnabled( ) const { return this->Base().IsMarkEnabled(); } static bool HasMark() { return true; } static bool HasMarkOcf() { return true; } inline void InitIMark() { IMark() = 0; } static void Name(std::vector & name){name.push_back(std::string("IMark"));T::Name(name);} }; ///*-------------------------- CURVATURE ----------------------------------*/ template class CurvatureOcf: public TT { public: typedef Point2 CurvatureType; typedef typename CurvatureType::ScalarType CurScalarType; CurScalarType &Kh(){ assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][0];} CurScalarType &Kg(){ assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][1];} CurScalarType cKh() const { assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][0];} CurScalarType cKg() const { assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][1];} template void ImportData(const RightVertexType & rightV){ if((*this).IsCurvatureEnabled() && rightV.IsCurvatureEnabled()) { (*this).Base().CuV[(*this).Index()][0] = rightV.cKh(); (*this).Base().CuV[(*this).Index()][1] = rightV.cKg(); } TT::ImportData(rightV); } inline bool IsCurvatureEnabled( ) const { return this->Base().IsCurvatureDirEnabled(); } static bool HasCurvature() { return true; } static bool HasCurvatureOcf() { return true; } }; template class CurvaturefOcf: public CurvatureOcf {public: static void Name(std::vector & name){name.push_back(std::string("CurvaturefOcf"));T::Name(name);} }; template class CurvaturedOcf: public CurvatureOcf {public: static void Name(std::vector & name){name.push_back(std::string("CurvaturedOcf"));T::Name(name);} }; ///*-------------------------- CURVATURE DIR ----------------------------------*/ template struct CurvatureDirTypeOcf{ typedef Point3 CurVecType; typedef S CurScalarType; CurvatureDirTypeOcf () {} CurVecType max_dir,min_dir; CurScalarType k1,k2; }; template class CurvatureDirOcf: public TT { public: typedef A CurvatureDirType; typedef typename CurvatureDirType::CurVecType CurVecType; typedef typename CurvatureDirType::CurScalarType CurScalarType; CurVecType &PD1() { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].max_dir;} CurVecType &PD2() { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].min_dir;} CurVecType cPD1() const { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].max_dir;} CurVecType cPD2() const { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].min_dir;} CurScalarType &K1() { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k1;} CurScalarType &K2() { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k2;} CurScalarType cK1() const { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k1;} CurScalarType cK2() const { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k2;} template void ImportData(const RightVertexType & rightV){ if((*this).IsCurvatureDirEnabled() && rightV.IsCurvatureDirEnabled()) { (*this).PD1() = rightV.cPD1(); (*this).PD2() = rightV.cPD2(); (*this).K1() = rightV.cK1(); (*this).K2() = rightV.cK2(); } TT::ImportData(rightV); } inline bool IsCurvatureDirEnabled( ) const { return this->Base().IsCurvatureDirEnabled(); } static bool HasCurvatureDir() { return true; } static bool HasCurvatureDirOcf() { return true; } static void Name(std::vector & name){name.push_back(std::string("CurvatureDirOcf"));TT::Name(name);} }; template class CurvatureDirfOcf: public CurvatureDirOcf, T> { public: static void Name(std::vector & name){name.push_back(std::string("CurvatureDirfOcf"));T::Name(name);} }; template class CurvatureDirdOcf: public CurvatureDirOcf, T> { public: static void Name(std::vector & name){name.push_back(std::string("CurvatureDirdOcf"));T::Name(name);} }; ///*-------------------------- RADIUS ----------------------------------*/ template class RadiusOcf: public TT { public: typedef A RadiusType; const RadiusType &R() const { assert((*this).Base().RadiusEnabled); return (*this).Base().RadiusV[(*this).Index()];} RadiusType &R() { assert((*this).Base().RadiusEnabled); return (*this).Base().RadiusV[(*this).Index()];} RadiusType cR() const { assert((*this).Base().RadiusEnabled); return (*this).Base().RadiusV[(*this).Index()];} template void ImportData(const RightVertexType & rightV) { if ((*this).IsRadiusEnabled() && rightV.IsRadiusEnabled()) (*this).Base().RadiusV[(*this).Index()] = rightV.cR(); TT::ImportData(rightV); } inline bool IsRadiusEnabled( ) const { return this->Base().IsRadiusEnabled(); } static bool HasRadius() { return true; } static bool HasRadiusOcf() { return true; } static void Name(std::vector & name){name.push_back(std::string("RadiusOcf")); TT::Name(name);} }; template class RadiusfOcf: public RadiusOcf {}; template class RadiusdOcf: public RadiusOcf {}; ///*-------------------------- InfoOpt ----------------------------------*/ template < class T> class InfoOcf: public T { public: // You should never ever try to copy a vertex that has OCF stuff. // use ImportData function. inline InfoOcf &operator=(const InfoOcf & /*other*/) { assert(0); return *this; } vector_ocf &Base() const { return *_ovp;} inline int Index() const { typename T::VertexType const *tp=static_cast(this); int tt2=tp- &*(_ovp->begin()); return tt2; } public: vector_ocf *_ovp; static bool HasColorOcf() { return false; } static bool HasCurvatureOcf() { return false; } static bool HasCurvatureDirOcf() { return false; } static bool HasNormalOcf() { return false; } static bool HasMarkOcf() { return false; } static bool HasQualityOcf() { return false; } static bool HasRadiusOcf() { return false; } static bool HasTexCoordOcf() { return false; } static bool HasVFAdjacencyOcf() { return false; } }; } // end namespace vert namespace tri { template < class VertexType > bool VertexVectorHasVFAdjacency(const vertex::vector_ocf &fv) { if(VertexType::HasVFAdjacencyOcf()) return fv.IsVFAdjacencyEnabled(); else return VertexType::HasVFAdjacency(); } template < class VertexType > bool VertexVectorHasPerVertexRadius(const vertex::vector_ocf &fv) { if(VertexType::HasRadiusOcf()) return fv.IsRadiusEnabled(); else return VertexType::HasRadius(); } template < class VertexType > bool VertexVectorHasPerVertexQuality(const vertex::vector_ocf &fv) { if(VertexType::HasQualityOcf()) return fv.IsQualityEnabled(); else return VertexType::HasQuality(); } template < class VertexType > bool VertexVectorHasPerVertexNormal(const vertex::vector_ocf &fv) { if(VertexType::HasNormalOcf()) return fv.IsNormalEnabled(); else return VertexType::HasNormal(); } template < class VertexType > bool VertexVectorHasPerVertexColor(const vertex::vector_ocf &fv) { if(VertexType::HasColorOcf()) return fv.IsColorEnabled(); else return VertexType::HasColor(); } template < class VertexType > bool VertexVectorHasPerVertexCurvature(const vertex::vector_ocf &fv) { if(VertexType::HasCurvatureOcf()) return fv.IsCurvatureEnabled(); else return VertexType::HasCurvature(); } template < class VertexType > bool VertexVectorHasPerVertexCurvatureDir(const vertex::vector_ocf &fv) { if(VertexType::HasCurvatureDirOcf()) return fv.IsCurvatureDirEnabled(); else return VertexType::HasCurvatureDir(); } template < class VertexType > bool VertexVectorHasPerVertexTexCoord(const vertex::vector_ocf &fv) { if(VertexType::HasTexCoordOcf()) return fv.IsTexCoordEnabled(); else return VertexType::HasTexCoord(); } } }// end namespace vcg #endif