/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_FACE_PLUS_COMPONENT_OCF #define __VCG_FACE_PLUS_COMPONENT_OCF #ifndef __VCG_MESH #error "This file should not be included alone. It is automatically included by complex.h" #endif namespace vcg { namespace face { /* All the Components that can be added to a faceex should be defined in the namespace face: */ template class vector_ocf: public std::vector { typedef std::vector BaseType; typedef typename vector_ocf::iterator ThisTypeIterator; public: vector_ocf():std::vector() { _ColorEnabled=false; CurvatureDirEnabled = false; MarkEnabled=false; NormalEnabled=false; QualityEnabled=false; WedgeTexEnabled=false; WedgeColorEnabled=false; WedgeNormalEnabled=false; VFAdjacencyEnabled=false; FFAdjacencyEnabled=false; } // Auxiliary types to build internal vectors struct AdjTypePack { typename VALUE_TYPE::FacePointer _fp[3] ; char _zp[3] ; // Default constructor. // Needed because we need to know if adjacency is initialized or not // when resizing vectors and during an allocate face. AdjTypePack() { _fp[0]=0; _fp[1]=0; _fp[2]=0; } }; //template class WedgeTexTypePack { public: WedgeTexTypePack() { wt[0].U()=.5;wt[0].V()=.5; wt[1].U()=.5;wt[1].V()=.5; wt[2].U()=.5;wt[2].V()=.5; wt[0].N()=-1; wt[1].N()=-1; wt[2].N()=-1; } typename VALUE_TYPE::TexCoordType wt[3]; }; class WedgeColorTypePack { public: WedgeColorTypePack() { typedef typename VALUE_TYPE::ColorType::ScalarType WedgeColorScalarType; for (int i=0; i<3; ++i) { wc[i][0] = WedgeColorScalarType(255); wc[i][1] = WedgeColorScalarType(255); wc[i][2] = WedgeColorScalarType(255); wc[i][3] = WedgeColorScalarType(255); } } typename VALUE_TYPE::WedgeColorType wc[3]; }; class WedgeNormalTypePack { public: WedgeNormalTypePack() { typedef typename VALUE_TYPE::NormalType::ScalarType WedgeNormalScalarType; for (int i=0; i<3; ++i) { wn[i][0] = WedgeNormalScalarType(0); wn[i][1] = WedgeNormalScalarType(0); wn[i][2] = WedgeNormalScalarType(1); } } typename VALUE_TYPE::WedgeNormalType wn[3]; }; //////////////////////////////////////// // All the standard methods of std::vector that can change the reallocation are // redefined in order to manage the additional data. void push_back(const VALUE_TYPE & v) { BaseType::push_back(v); BaseType::back()._ovp = this; if (QualityEnabled) QV.push_back(0); if (_ColorEnabled) CV.push_back(vcg::Color4b(vcg::Color4b::White)); if (MarkEnabled) MV.push_back(0); if (NormalEnabled) NV.push_back(typename VALUE_TYPE::NormalType()); if (CurvatureDirEnabled) CDV.push_back(typename VALUE_TYPE::CurvatureDirType()); if (VFAdjacencyEnabled) AV.push_back(AdjTypePack()); if (FFAdjacencyEnabled) AF.push_back(AdjTypePack()); if (WedgeTexEnabled) WTV.push_back(WedgeTexTypePack()); if (WedgeColorEnabled) WCV.push_back(WedgeColorTypePack()); if (WedgeNormalEnabled) WNV.push_back(WedgeNormalTypePack()); } void pop_back(); void resize(size_t _size) { size_t oldsize = BaseType::size(); BaseType::resize(_size); if(oldsize<_size){ ThisTypeIterator firstnew = BaseType::begin(); advance(firstnew,oldsize); _updateOVP(firstnew,(*this).end()); } if (QualityEnabled) QV.resize(_size,0); if (_ColorEnabled) CV.resize(_size); if (MarkEnabled) MV.resize(_size); if (NormalEnabled) NV.resize(_size); if (CurvatureDirEnabled)CDV.resize(_size); if (VFAdjacencyEnabled) AV.resize(_size); if (FFAdjacencyEnabled) AF.resize(_size); if (WedgeTexEnabled) WTV.resize(_size,WedgeTexTypePack()); if (WedgeColorEnabled) WCV.resize(_size); if (WedgeNormalEnabled) WNV.resize(_size); } void reserve(size_t _size) { BaseType::reserve(_size); if (QualityEnabled) QV.reserve(_size); if (_ColorEnabled) CV.reserve(_size); if (MarkEnabled) MV.reserve(_size); if (NormalEnabled) NV.reserve(_size); if (CurvatureDirEnabled)CDV.reserve(_size); if (VFAdjacencyEnabled) AV.reserve(_size); if (FFAdjacencyEnabled) AF.reserve(_size); if (WedgeTexEnabled) WTV.reserve(_size); if (WedgeColorEnabled) WCV.reserve(_size); if (WedgeNormalEnabled) WNV.reserve(_size); if( BaseType::empty()) return ; ThisTypeIterator oldbegin=(*this).begin(); if(oldbegin!=(*this).begin()) _updateOVP((*this).begin(),(*this).end()); } void _updateOVP(ThisTypeIterator lbegin, ThisTypeIterator lend) { ThisTypeIterator fi; //for(fi=(*this).begin();vi!=(*this).end();++vi) for(fi=lbegin;fi!=lend;++fi) (*fi)._ovp=this; } // this function is called by the specialized Reorder function, that is called whenever someone call the allocator::CompactVertVector void ReorderFace(std::vector &newFaceIndex ) { size_t i=0; if (QualityEnabled) assert( QV.size() == newFaceIndex.size() ); if (_ColorEnabled) assert( CV.size() == newFaceIndex.size() ); if (MarkEnabled) assert( MV.size() == newFaceIndex.size() ); if (NormalEnabled) assert( NV.size() == newFaceIndex.size() ); if (CurvatureDirEnabled)assert(CDV.size() == newFaceIndex.size() ); if (VFAdjacencyEnabled) assert( AV.size() == newFaceIndex.size() ); if (FFAdjacencyEnabled) assert( AF.size() == newFaceIndex.size() ); if (WedgeTexEnabled) assert(WTV.size() == newFaceIndex.size() ); if (WedgeColorEnabled) assert(WCV.size() == newFaceIndex.size() ); if (WedgeNormalEnabled) assert(WNV.size() == newFaceIndex.size() ); for(i=0;i::max() ) { assert(newFaceIndex[i] <= i); if (QualityEnabled) QV[newFaceIndex[i]] = QV[i]; if (_ColorEnabled) CV[newFaceIndex[i]] = CV[i]; if (MarkEnabled) MV[newFaceIndex[i]] = MV[i]; if (NormalEnabled) NV[newFaceIndex[i]] = NV[i]; if (CurvatureDirEnabled) CDV[newFaceIndex[i]] = CDV[i]; if (VFAdjacencyEnabled) AV[newFaceIndex[i]] = AV[i]; if (FFAdjacencyEnabled) AF[newFaceIndex[i]] = AF[i]; if (WedgeTexEnabled) WTV[newFaceIndex[i]] = WTV[i]; if (WedgeColorEnabled) WCV[newFaceIndex[i]] = WCV[i]; if (WedgeNormalEnabled) WNV[newFaceIndex[i]] = WNV[i]; } } if (QualityEnabled) QV.resize(BaseType::size(),0); if (_ColorEnabled) CV.resize(BaseType::size()); if (MarkEnabled) MV.resize(BaseType::size()); if (NormalEnabled) NV.resize(BaseType::size()); if (CurvatureDirEnabled) CDV.resize(BaseType::size()); if (VFAdjacencyEnabled) AV.resize(BaseType::size()); if (FFAdjacencyEnabled) AF.resize(BaseType::size()); if (WedgeTexEnabled) WTV.resize(BaseType::size()); if (WedgeColorEnabled) WCV.resize(BaseType::size()); if (WedgeNormalEnabled) WNV.resize(BaseType::size()); } //////////////////////////////////////// // Enabling Functions bool IsQualityEnabled() const {return QualityEnabled;} void EnableQuality() { assert(VALUE_TYPE::HasQualityOcf()); QualityEnabled=true; QV.resize((*this).size(),0); } void DisableQuality() { assert(VALUE_TYPE::HasQualityOcf()); QualityEnabled=false; QV.clear(); } bool IsColorEnabled() const {return _ColorEnabled;} void EnableColor() { assert(VALUE_TYPE::HasColorOcf()); _ColorEnabled=true; CV.resize((*this).size(),vcg::Color4b::White); } void DisableColor() { assert(VALUE_TYPE::HasColorOcf()); _ColorEnabled=false; CV.clear(); } bool IsMarkEnabled() const {return MarkEnabled;} void EnableMark() { assert(VALUE_TYPE::HasMarkOcf()); MarkEnabled=true; MV.resize((*this).size(),0); } void DisableMark() { assert(VALUE_TYPE::HasMarkOcf()); MarkEnabled=false; MV.clear(); } bool IsNormalEnabled() const {return NormalEnabled;} void EnableNormal() { assert(VALUE_TYPE::HasNormalOcf()); NormalEnabled=true; NV.resize((*this).size()); } void DisableNormal() { assert(VALUE_TYPE::HasNormalOcf()); NormalEnabled=false; NV.clear(); } bool IsCurvatureDirEnabled() const {return CurvatureDirEnabled;} void EnableCurvatureDir() { assert(VALUE_TYPE::HasCurvatureDirOcf()); CurvatureDirEnabled=true; CDV.resize((*this).size()); } void DisableCurvatureDir() { assert(VALUE_TYPE::HasCurvatureDirOcf()); CurvatureDirEnabled=false; CDV.clear(); } bool IsVFAdjacencyEnabled() const {return VFAdjacencyEnabled;} void EnableVFAdjacency() { assert(VALUE_TYPE::HasVFAdjacencyOcf()); VFAdjacencyEnabled=true; AV.resize((*this).size()); } void DisableVFAdjacency() { assert(VALUE_TYPE::HasVFAdjacencyOcf()); VFAdjacencyEnabled=false; AV.clear(); } bool IsFFAdjacencyEnabled() const {return FFAdjacencyEnabled;} void EnableFFAdjacency() { assert(VALUE_TYPE::HasFFAdjacencyOcf()); FFAdjacencyEnabled=true; AF.resize((*this).size()); } void DisableFFAdjacency() { assert(VALUE_TYPE::HasFFAdjacencyOcf()); FFAdjacencyEnabled=false; AF.clear(); } bool IsWedgeTexCoordEnabled() const {return WedgeTexEnabled;} void EnableWedgeTexCoord() { assert(VALUE_TYPE::HasWedgeTexCoordOcf()); WedgeTexEnabled=true; WTV.resize((*this).size(),WedgeTexTypePack()); } void DisableWedgeTexCoord() { assert(VALUE_TYPE::HasWedgeTexCoordOcf()); WedgeTexEnabled=false; WTV.clear(); } bool IsWedgeColorEnabled() const {return WedgeColorEnabled;} void EnableWedgeColor() { assert(VALUE_TYPE::HasWedgeColorOcf()); WedgeColorEnabled=true; WCV.resize((*this).size(),WedgeColorTypePack()); } void DisableWedgeColor() { assert(VALUE_TYPE::HasWedgeColorOcf()); WedgeColorEnabled=false; WCV.clear(); } bool IsWedgeNormalEnabled() const {return WedgeNormalEnabled;} void EnableWedgeNormal() { assert(VALUE_TYPE::HasWedgeNormalOcf()); WedgeNormalEnabled=true; WNV.resize((*this).size(),WedgeNormalTypePack()); } void DisableWedgeNormal() { assert(VALUE_TYPE::HasWedgeNormalOcf()); WedgeNormalEnabled=false; WNV.clear(); } public: std::vector CV; std::vector CDV; std::vector MV; std::vector NV; std::vector QV; std::vector WCV; std::vector WNV; std::vector WTV; std::vector AV; std::vector AF; bool _ColorEnabled; bool CurvatureDirEnabled; bool MarkEnabled; bool NormalEnabled; bool QualityEnabled; bool WedgeColorEnabled; bool WedgeNormalEnabled; bool WedgeTexEnabled; bool VFAdjacencyEnabled; bool FFAdjacencyEnabled; }; // end class vector_ocf /*----------------------------- VFADJ ------------------------------*/ template class VFAdjOcf: public T { public: typename T::FacePointer &VFp(const int j) { assert((*this).Base().VFAdjacencyEnabled); return (*this).Base().AV[(*this).Index()]._fp[j]; } typename T::FacePointer cVFp(const int j) const { if(! (*this).Base().VFAdjacencyEnabled ) return 0; else return (*this).Base().AV[(*this).Index()]._fp[j]; } char &VFi(const int j) { assert((*this).Base().VFAdjacencyEnabled); return (*this).Base().AV[(*this).Index()]._zp[j]; } char cVFi(const int j) const { assert((*this).Base().VFAdjacencyEnabled); return (*this).Base().AV[(*this).Index()]._zp[j]; } template void ImportData(const RightFaceType & rightF){ T::ImportData(rightF); } static bool HasVFAdjacency() { return true; } static bool HasVFAdjacencyOcf() { return true; } private: }; /*----------------------------- FFADJ ------------------------------*/ template class FFAdjOcf: public T { public: typename T::FacePointer &FFp(const int j) { assert((*this).Base().FFAdjacencyEnabled); return (*this).Base().AF[(*this).Index()]._fp[j]; } typename T::FacePointer cFFp(const int j) const { if(! (*this).Base().FFAdjacencyEnabled ) return 0; else return (*this).Base().AF[(*this).Index()]._fp[j]; } char &FFi(const int j) { assert((*this).Base().FFAdjacencyEnabled); return (*this).Base().AF[(*this).Index()]._zp[j]; } char cFFi(const int j) const { assert((*this).Base().FFAdjacencyEnabled); return (*this).Base().AF[(*this).Index()]._zp[j]; } typename T::FacePointer &FFp1( const int j ) { return FFp((j+1)%3);} typename T::FacePointer &FFp2( const int j ) { return FFp((j+2)%3);} typename T::FacePointer cFFp1( const int j ) const { return FFp((j+1)%3);} typename T::FacePointer cFFp2( const int j ) const { return FFp((j+2)%3);} typename T::FacePointer &Neigh( const int j ) { return FFp(j);} typename T::FacePointer cNeigh( const int j ) const { return cFFp(j);} unsigned int SizeNeigh(){return 3;} template void ImportData(const RightFaceType & rightF){ T::ImportData(rightF); } static bool HasFFAdjacency() { return true; } static bool HasFFAdjacencyOcf() { return true; } }; /*------------------------- Normal -----------------------------------------*/ template class NormalOcf: public T { public: typedef A NormalType; inline bool IsNormalEnabled( ) const { return this->Base().IsNormalEnabled(); } static bool HasNormal() { return true; } static bool HasNormalOcf() { return true; } NormalType &N() { // you cannot use Normals before enabling them with: yourmesh.face.EnableNormal() assert((*this).Base().NormalEnabled); return (*this).Base().NV[(*this).Index()]; } NormalType cN() const { // you cannot use Normals before enabling them with: yourmesh.face.EnableNormal() assert((*this).Base().NormalEnabled); return (*this).Base().NV[(*this).Index()]; } template void ImportData(const RightFaceType & rightF){ if((*this).IsNormalEnabled() && rightF.IsNormalEnabled()) N() = rightF.cN(); T::ImportData(rightF); } }; template class Normal3sOcf: public NormalOcf {}; template class Normal3fOcf: public NormalOcf {}; template class Normal3dOcf: public NormalOcf {}; /*------------------------- CurvatureDir -----------------------------------------*/ template struct CurvatureDirOcfBaseType{ typedef Point3 CurVecType; typedef S CurScalarType; CurvatureDirOcfBaseType () {} CurVecType max_dir,min_dir; // max and min curvature direction CurScalarType k1,k2;// max and min curvature values }; template class CurvatureDirOcf: public T { public: typedef A CurvatureDirType; typedef typename CurvatureDirType::CurVecType CurVecType; typedef typename CurvatureDirType::CurScalarType CurScalarType; inline bool IsCurvatureDirEnabled( ) const { return this->Base().IsCurvatureDirEnabled(); } static bool HasCurvatureDir() { return true; } static bool HasCurvatureDirOcf() { return true; } CurVecType &PD1() { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CDV[(*this).Index()].max_dir; } CurVecType &PD2() { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CDV[(*this).Index()].min_dir; } CurVecType cPD1() const { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CDV[(*this).Index()].max_dir; } CurVecType cPD2() const { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CDV[(*this).Index()].min_dir; } CurScalarType &K1() { assert((*this).Base().NormalEnabled); return (*this).Base().CDV[(*this).Index()].k1; } CurScalarType &K2() { assert((*this).Base().NormalEnabled); return (*this).Base().CDV[(*this).Index()].k2; } CurScalarType cK1() const { assert((*this).Base().NormalEnabled); return (*this).Base().CDV[(*this).Index()].k1; } CurScalarType cK2() const { assert((*this).Base().NormalEnabled); return (*this).Base().CDV[(*this).Index()].k2; } template void ImportData(const RightFaceType & rightF){ if((*this).IsCurvatureDirEnabled() && rightF.IsCurvatureDirEnabled()) { PD1().Import(rightF.cPD1()); PD2().Import(rightF.cPD2()); K1() = rightF.cK1(); K2() = rightF.cK2(); } T::ImportData(rightF); } }; template class CurvatureDirfOcf: public CurvatureDirOcf, T> { public: static void Name(std::vector & name){name.push_back(std::string("CurvatureDirfOcf"));T::Name(name);} }; template class CurvatureDirdOcf: public CurvatureDirOcf, T> { public: static void Name(std::vector & name){name.push_back(std::string("CurvatureDirdOcf"));T::Name(name);} }; ///*-------------------------- QUALITY ----------------------------------*/ template class QualityOcf: public T { public: typedef A QualityType; QualityType &Q() { assert((*this).Base().QualityEnabled); return (*this).Base().QV[(*this).Index()]; } QualityType cQ() const { assert((*this).Base().QualityEnabled); return (*this).Base().QV[(*this).Index()]; } template void ImportData(const RightFaceType & rightF){ if((*this).IsQualityEnabled() && rightF.IsQualityEnabled()) Q() = rightF.cQ(); T::ImportData(rightF); } inline bool IsQualityEnabled( ) const { return this->Base().IsQualityEnabled(); } static bool HasQuality() { return true; } static bool HasQualityOcf() { return true; } }; template class QualityfOcf: public QualityOcf {}; ///*-------------------------- COLOR ----------------------------------*/ template class ColorOcf: public T { public: typedef A ColorType; ColorType &C() { assert((*this).Base()._ColorEnabled); return (*this).Base().CV[(*this).Index()]; } ColorType cC() const { assert((*this).Base()._ColorEnabled); return (*this).Base().CV[(*this).Index()]; } template void ImportData(const RightFaceType & rightF){ if((*this).IsColorEnabled() && rightF.IsColorEnabled()) C() = rightF.cC(); T::ImportData(rightF); } inline bool IsColorEnabled() const { return this->Base().IsColorEnabled();} static bool HasColor() { return true; } static bool HasColorOcf() { return true; } }; template class Color4bOcf: public ColorOcf {}; ///*-------------------------- MARK ----------------------------------*/ template class MarkOcf: public T { public: inline int &IMark() { assert((*this).Base().MarkEnabled); return (*this).Base().MV[(*this).Index()]; } inline int cIMark() const { assert((*this).Base().MarkEnabled); return (*this).Base().MV[(*this).Index()]; } template void ImportData(const RightFaceType & rightF){ if((*this).IsMarkEnabled() && rightF.IsMarkEnabled()) IMark() = rightF.cIMark(); T::ImportData(rightF); } inline bool IsMarkEnabled( ) const { return this->Base().IsMarkEnabled(); } static bool HasMark() { return true; } static bool HasMarkOcf() { return true; } inline void InitIMark() { IMark() = 0; } }; ///*-------------------------- WEDGE TEXCOORD ----------------------------------*/ template class WedgeTexCoordOcf: public TT { public: WedgeTexCoordOcf(){ } typedef A TexCoordType; TexCoordType &WT(const int i) { assert((*this).Base().WedgeTexEnabled); return (*this).Base().WTV[(*this).Index()].wt[i]; } TexCoordType cWT(const int i) const { assert((*this).Base().WedgeTexEnabled); return (*this).Base().WTV[(*this).Index()].wt[i]; } template void ImportData(const RightFaceType & rightF){ if(this->IsWedgeTexCoordEnabled() && rightF.IsWedgeTexCoordEnabled()) { WT(0) = rightF.cWT(0); WT(1) = rightF.cWT(1); WT(2) = rightF.cWT(2); } TT::ImportData(rightF); } inline bool IsWedgeTexCoordEnabled( ) const { return this->Base().IsWedgeTexCoordEnabled(); } static bool HasWedgeTexCoord() { return true; } static bool HasWedgeTexCoordOcf() { return true; } }; template class WedgeTexCoordfOcf: public WedgeTexCoordOcf, T> {}; ///*-------------------------- WEDGE COLOR ----------------------------------*/ template class WedgeColorOcf: public TT { public: WedgeColorOcf(){ } typedef A WedgeColorType; WedgeColorType &WC(const int i) { assert((*this).Base().WedgeColorEnabled); return (*this).Base().WCV[(*this).Index()].wc[i]; } const WedgeColorType cWC(const int i) const { assert((*this).Base().WedgeColorEnabled); return (*this).Base().WCV[(*this).Index()].wc[i]; } template void ImportData(const RightFaceType & rightF){ if(this->IsWedgeColorEnabled() && rightF.IsWedgeColorEnabled()) { WC(0) = rightF.cWC(0); WC(1) = rightF.cWC(1); WC(2) = rightF.cWC(2); } TT::ImportData(rightF); } inline bool IsWedgeColorEnabled( ) const { return this->Base().IsWedgeColorEnabled(); } static bool HasWedgeColor() { return true; } static bool HasWedgeColorOcf() { return true; } }; template class WedgeColor4bOcf: public WedgeColorOcf {}; ///*-------------------------- WEDGE NORMAL ----------------------------------*/ template class WedgeNormalOcf: public TT { public: WedgeNormalOcf(){ } typedef A WedgeNormalType; WedgeNormalType &WN(const int i) { assert((*this).Base().WedgeNormalEnabled); return (*this).Base().WNV[(*this).Index()].wn[i]; } WedgeNormalType const &cWN(const int i) const { assert((*this).Base().WedgeNormalEnabled); return (*this).Base().WNV[(*this).Index()].wn[i]; } template void ImportData(const RightFaceType & rightF){ if(this->IsWedgeNormalEnabled() && rightF.IsWedgeNormalEnabled()) { WN(0) = rightF.cWN(0); WN(1) = rightF.cWN(1); WN(2) = rightF.cWN(2); } TT::ImportData(rightF); } inline bool IsWedgeNormalEnabled( ) const { return this->Base().IsWedgeNormalEnabled(); } static bool HasWedgeNormal() { return true; } static bool HasWedgeNormalOcf() { return true; } }; template class WedgeNormal3sOcf: public WedgeNormalOcf {}; template class WedgeNormal3fOcf: public WedgeNormalOcf {}; template class WedgeNormal3dOcf: public WedgeNormalOcf {}; ///*-------------------------- InfoOpt ----------------------------------*/ template < class T> class InfoOcf: public T { public: // You should never ever try to copy a vertex that has OCF stuff. // use ImportData function. inline InfoOcf &operator=(const InfoOcf & /*other*/) { assert(0); return *this; } vector_ocf &Base() const { return *_ovp;} template void ImportData(const RightFaceType & rightF){T::ImportData(rightF);} static bool HasColorOcf() { return false; } static bool HasCurvatureDirOcf() { return false; } static bool HasMarkOcf() { return false; } static bool HasNormalOcf() { return false; } static bool HasQualityOcf() { return false; } static bool HasWedgeTexCoordOcf() { return false; } static bool HasWedgeColorOcf() { return false; } static bool HasWedgeNormalOcf() { return false; } static bool HasFFAdjacencyOcf() { return false; } static bool HasVFAdjacencyOcf() { return false; } inline size_t Index() const { typename T::FaceType const *tp=static_cast(this); size_t tt2=tp- &*(_ovp->begin()); return tt2; } public: // ovp Optional Vector Pointer // Pointer to the base vector where each face element is stored. // used to access to the vectors of the other optional members. vector_ocf *_ovp; }; } // end namespace face template < class, class,class,class > class TriMesh; namespace tri { template < class FaceType > bool FaceVectorHasVFAdjacency(const face::vector_ocf &fv) { if(FaceType::HasVFAdjacencyOcf()) return fv.IsVFAdjacencyEnabled(); else return FaceType::HasVFAdjacency(); } template < class FaceType > bool FaceVectorHasFFAdjacency(const face::vector_ocf &fv) { if(FaceType::HasFFAdjacencyOcf()) return fv.IsFFAdjacencyEnabled(); else return FaceType::HasFFAdjacency(); } template < class FaceType > bool FaceVectorHasPerWedgeTexCoord(const face::vector_ocf &fv) { if(FaceType::HasWedgeTexCoordOcf()) return fv.IsWedgeTexCoordEnabled(); else return FaceType::HasWedgeTexCoord(); } template < class FaceType > bool FaceVectorHasPerFaceColor(const face::vector_ocf &fv) { if(FaceType::HasColorOcf()) return fv.IsColorEnabled(); else return FaceType::HasColor(); } template < class FaceType > bool FaceVectorHasPerFaceQuality(const face::vector_ocf &fv) { if(FaceType::HasQualityOcf()) return fv.IsQualityEnabled(); else return FaceType::HasQuality(); } template < class FaceType > bool FaceVectorHasPerFaceMark(const face::vector_ocf &fv) { if(FaceType::HasMarkOcf()) return fv.IsMarkEnabled(); else return FaceType::HasMark(); } template < class FaceType > bool FaceVectorHasPerFaceCurvatureDir(const face::vector_ocf &fv) { if(FaceType::HasCurvatureDirOcf()) return fv.IsCurvatureDirEnabled(); else return FaceType::HasCurvatureDir(); } template < class FaceType > bool FaceVectorHasPerFaceNormal(const face::vector_ocf &fv) { if(FaceType::HasNormalOcf()) return fv.IsNormalEnabled(); else return FaceType::HasNormal(); } template < class FaceType > void ReorderFace( std::vector &newFaceIndex, face::vector_ocf< FaceType > &faceVec) { faceVec.ReorderFace(newFaceIndex); } } }// end namespace vcg #endif