/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2009 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_TRIVIAL_WALKER #define __VCG_TRIVIAL_WALKER #include namespace vcg { // Very simple volume class. // just an example of the interface that the trivial walker expects template class SimpleVolume { public: typedef VOX_TYPE VoxelType; std::vector Vol; Point3i sz; /// Dimensioni griglia come numero di celle per lato const Point3i &ISize() {return sz;}; /// Dimensioni griglia come numero di celle per lato void Init(Point3i _sz) { sz=_sz; Vol.resize(sz[0]*sz[1]*sz[2]); } float Val(const int &x,const int &y,const int &z) const { return cV(x,y,z).V(); //else return numeric_limits::quiet_NaN( ); } float &Val(const int &x,const int &y,const int &z) { return V(x,y,z).V(); //else return numeric_limits::quiet_NaN( ); } VOX_TYPE &V(const int &x,const int &y,const int &z) { return Vol[x+y*sz[0]+z*sz[0]*sz[1]]; } const VOX_TYPE &cV(const int &x,const int &y,const int &z) const { return Vol[x+y*sz[0]+z*sz[0]*sz[1]]; } typedef enum { XAxis=0,YAxis=1,ZAxis=2} VolumeAxis; template < class VertexPointerType, VolumeAxis AxisVal > void GetIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointerType &v, const float thr) { float f1 = Val(p1.X(), p1.Y(), p1.Z())-thr; float f2 = Val(p2.X(), p2.Y(), p2.Z())-thr; float u = (float) f1/(f1-f2); if(AxisVal==XAxis) v->P().X() = (float) p1.X()*(1-u) + u*p2.X(); else v->P().X() = (float) p1.X(); if(AxisVal==YAxis) v->P().Y() = (float) p1.Y()*(1-u) + u*p2.Y(); else v->P().Y() = (float) p1.Y(); if(AxisVal==ZAxis) v->P().Z() = (float) p1.Z()*(1-u) + u*p2.Z(); else v->P().Z() = (float) p1.Z(); } template < class VertexPointerType > void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointerType &v, const float thr) { GetIntercept(p1,p2,v,thr); } template < class VertexPointerType > void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointerType &v, const float thr) { GetIntercept(p1,p2,v,thr); } template < class VertexPointerType > void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointerType &v, const float thr) { GetIntercept(p1,p2,v,thr); } }; template class RawVolumeImporter { public: enum DataType { // Funzioni superiori UNDEF=0, BYTE=1, SHORT=2, FLOAT=3 }; static bool Open(const char *filename, VolumeType &V, Point3i sz, DataType d) { return true; } }; class SimpleVoxel { private: float _v; public: float &V() {return _v;}; float V() const {return _v;}; }; namespace tri { // La classe Walker implementa la politica di visita del volume; conoscendo l'ordine di visita del volume // Ë conveniente che il Walker stesso si faccia carico del caching dei dati utilizzati durante l'esecuzione // degli algoritmi MarchingCubes ed ExtendedMarchingCubes, in particolare il calcolo del volume ai vertici // delle celle e delle intersezioni della superficie con le celle. In questo esempio il volume da processare // viene suddiviso in fette; in questo modo se il volume ha dimensione h*l*w (rispettivamente altezza, // larghezza e profondit‡), lo spazio richiesto per il caching dei vertici gi‡ allocati passa da O(h*l*w) // a O(h*l). template class TrivialWalker { private: typedef int VertexIndex; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::VertexPointer VertexPointer; public: // bbox is the portion of the volume to be computed // resolution determine the sampling step: // should be a divisor of bbox size (e.g. if bbox size is 256^3 resolution could be 128,64, etc) void Init(VolumeType &volume) { _bbox = Box3i(Point3i(0,0,0),volume.ISize()); _slice_dimension = _bbox.DimX()*_bbox.DimZ(); _x_cs = new VertexIndex[ _slice_dimension ]; _y_cs = new VertexIndex[ _slice_dimension ]; _z_cs = new VertexIndex[ _slice_dimension ]; _x_ns = new VertexIndex[ _slice_dimension ]; _z_ns = new VertexIndex[ _slice_dimension ]; }; ~TrivialWalker() {_thr=0;} template void BuildMesh(MeshType &mesh, VolumeType &volume, EXTRACTOR_TYPE &extractor, const float threshold, vcg::CallBackPos * cb=0) { Init(volume); _volume = &volume; _mesh = &mesh; _mesh->Clear(); _thr=threshold; vcg::Point3i p1, p2; Begin(); extractor.Initialize(); for (int j=_bbox.min.Y(); j<(_bbox.max.Y()-1)-1; j+=1) { if(cb && ((j%10)==0) ) cb(j*_bbox.DimY()/100.0,"Marching volume"); for (int i=_bbox.min.X(); i<(_bbox.max.X()-1)-1; i+=1) { for (int k=_bbox.min.Z(); k<(_bbox.max.Z()-1)-1; k+=1) { p1.X()=i; p1.Y()=j; p1.Z()=k; p2.X()=i+1; p2.Y()=j+1; p2.Z()=k+1; extractor.ProcessCell(p1, p2); } } NextSlice(); } extractor.Finalize(); _volume = NULL; _mesh = NULL; }; float V(int pi, int pj, int pk) { return _volume->Val(pi, pj, pk)-_thr; } bool Exist(const vcg::Point3i &p0, const vcg::Point3i &p1, VertexPointer &v) { int pos = p0.X()+p0.Z()*_bbox.max.X(); int vidx; if (p0.X()!=p1.X()) // punti allineati lungo l'asse X vidx = (p0.Y()==_current_slice) ? _x_cs[pos] : _x_ns[pos]; else if (p0.Y()!=p1.Y()) // punti allineati lungo l'asse Y vidx = _y_cs[pos]; else if (p0.Z()!=p1.Z()) // punti allineati lungo l'asse Z vidx = (p0.Y()==_current_slice)? _z_cs[pos] : _z_ns[pos]; else assert(false); v = (vidx!=-1)? &_mesh->vert[vidx] : NULL; return v!=NULL; } void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) { int i = p1.X() - _bbox.min.X(); int z = p1.Z() - _bbox.min.Z(); VertexIndex index = i+z*_bbox.max.X(); VertexIndex pos; if (p1.Y()==_current_slice) { if ((pos=_x_cs[index])==-1) { _x_cs[index] = (VertexIndex) _mesh->vert.size(); pos = _x_cs[index]; Allocator::AddVertices( *_mesh, 1 ); v = &_mesh->vert[pos]; _volume->GetXIntercept(p1, p2, v, _thr); return; } } if (p1.Y()==_current_slice+1) { if ((pos=_x_ns[index])==-1) { _x_ns[index] = (VertexIndex) _mesh->vert.size(); pos = _x_ns[index]; Allocator::AddVertices( *_mesh, 1 ); v = &_mesh->vert[pos]; _volume->GetXIntercept(p1, p2, v,_thr); return; } } assert(pos >=0 && size_t(pos)< _mesh->vert.size()); v = &_mesh->vert[pos]; } void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) { int i = p1.X() - _bbox.min.X(); int z = p1.Z() - _bbox.min.Z(); VertexIndex index = i+z*_bbox.max.X(); VertexIndex pos; if ((pos=_y_cs[index])==-1) { _y_cs[index] = (VertexIndex) _mesh->vert.size(); pos = _y_cs[index]; Allocator::AddVertices( *_mesh, 1); v = &_mesh->vert[ pos ]; _volume->GetYIntercept(p1, p2, v,_thr); } v = &_mesh->vert[pos]; } void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) { int i = p1.X() - _bbox.min.X(); int z = p1.Z() - _bbox.min.Z(); VertexIndex index = i+z*_bbox.max.X(); VertexIndex pos; if (p1.Y()==_current_slice) { if ((pos=_z_cs[index])==-1) { _z_cs[index] = (VertexIndex) _mesh->vert.size(); pos = _z_cs[index]; Allocator::AddVertices( *_mesh, 1 ); v = &_mesh->vert[pos]; _volume->GetZIntercept(p1, p2, v,_thr); return; } } if (p1.Y()==_current_slice+1) { if ((pos=_z_ns[index])==-1) { _z_ns[index] = (VertexIndex) _mesh->vert.size(); pos = _z_ns[index]; Allocator::AddVertices( *_mesh, 1 ); v = &_mesh->vert[pos]; _volume->GetZIntercept(p1, p2, v,_thr); return; } } v = &_mesh->vert[pos]; } protected: Box3i _bbox; int _slice_dimension; int _current_slice; VertexIndex *_x_cs; // indici dell'intersezioni della superficie lungo gli Xedge della fetta corrente VertexIndex *_y_cs; // indici dell'intersezioni della superficie lungo gli Yedge della fetta corrente VertexIndex *_z_cs; // indici dell'intersezioni della superficie lungo gli Zedge della fetta corrente VertexIndex *_x_ns; // indici dell'intersezioni della superficie lungo gli Xedge della prossima fetta VertexIndex *_z_ns; // indici dell'intersezioni della superficie lungo gli Zedge della prossima fetta MeshType *_mesh; VolumeType *_volume; float _thr; void NextSlice() { memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex)); std::swap(_x_cs, _x_ns); std::swap(_z_cs, _z_ns); _current_slice += 1; } void Begin() { _current_slice = _bbox.min.Y(); memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_x_ns, -1, _slice_dimension*sizeof(VertexIndex)); memset(_z_ns, -1, _slice_dimension*sizeof(VertexIndex)); } }; } // end namespace } // end namespace #endif // __VCGTEST_WALKER