/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_TRI_UPDATE_SELECTION #define __VCG_TRI_UPDATE_SELECTION #include #include namespace vcg { namespace tri { /// \ingroup trimesh /// \brief A stack for saving and restoring selection. /** This class is used to save the current selection onto a stack for later use. \todo it should be generalized to other attributes with a templated approach. */ template class SelectionStack { typedef typename ComputeMeshType::template PerVertexAttributeHandle< bool > vsHandle; typedef typename ComputeMeshType::template PerFaceAttributeHandle< bool > fsHandle; public: SelectionStack(ComputeMeshType &m) { _m=&m; } bool push() { vsHandle vsH = Allocator::template AddPerVertexAttribute< bool >(*_m); fsHandle fsH = Allocator::template AddPerFaceAttribute< bool > (*_m); typename ComputeMeshType::VertexIterator vi; for(vi = _m->vert.begin(); vi != _m->vert.end(); ++vi) if( !(*vi).IsD() ) vsH[*vi] = (*vi).IsS() ; typename ComputeMeshType::FaceIterator fi; for(fi = _m->face.begin(); fi != _m->face.end(); ++fi) if( !(*fi).IsD() ) fsH[*fi] = (*fi).IsS() ; vsV.push_back(vsH); fsV.push_back(fsH); return true; } bool pop() { if(vsV.empty()) return false; vsHandle vsH = vsV.back(); fsHandle fsH = fsV.back(); if(! (Allocator::template IsValidHandle(*_m, vsH))) return false; typename ComputeMeshType::VertexIterator vi; for(vi = _m->vert.begin(); vi != _m->vert.end(); ++vi) if( !(*vi).IsD() ) if(vsH[*vi]) (*vi).SetS() ; else (*vi).ClearS() ; typename ComputeMeshType::FaceIterator fi; for(fi = _m->face.begin(); fi != _m->face.end(); ++fi) if( !(*fi).IsD() ) if(fsH[*fi]) (*fi).SetS() ; else (*fi).ClearS() ; Allocator::template DeletePerVertexAttribute(*_m,vsH); Allocator::template DeletePerFaceAttribute(*_m,fsH); vsV.pop_back(); fsV.pop_back(); return true; } private: ComputeMeshType *_m; std::vector vsV; std::vector fsV; }; /// \ingroup trimesh /// \headerfile selection.h vcg/complex/algorithms/update/selection.h /// \brief Management, updating and computation of per-vertex and per-face normals. /** This class is used to compute or update the normals that can be stored in the vertex or face component of a mesh. */ template class UpdateSelection { public: typedef ComputeMeshType MeshType; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; typedef typename vcg::Box3 Box3Type; static size_t AllVertex(MeshType &m) { VertexIterator vi; for(vi = m.vert.begin(); vi != m.vert.end(); ++vi) if( !(*vi).IsD() ) (*vi).SetS(); return m.vn; } static size_t AllFace(MeshType &m) { FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() ) (*fi).SetS(); return m.fn; } static size_t ClearVertex(MeshType &m) { VertexIterator vi; for(vi = m.vert.begin(); vi != m.vert.end(); ++vi) if( !(*vi).IsD() ) (*vi).ClearS(); return 0; } static size_t ClearFace(MeshType &m) { FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() ) (*fi).ClearS(); return 0; } static void Clear(MeshType &m) { ClearVertex(m); ClearFace(m); } static size_t CountFace(MeshType &m) { size_t selCnt=0; FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD() && (*fi).IsS()) ++selCnt; return selCnt; } static size_t CountVertex(MeshType &m) { size_t selCnt=0; VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && (*vi).IsS()) ++selCnt; return selCnt; } static size_t InvertFace(MeshType &m) { size_t selCnt=0; FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { if((*fi).IsS()) (*fi).ClearS(); else { (*fi).SetS(); ++selCnt; } } return selCnt; } static size_t InvertVertex(MeshType &m) { size_t selCnt=0; VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) { if((*vi).IsS()) (*vi).ClearS(); else { (*vi).SetS(); ++selCnt; } } return selCnt; } /// \brief Select all the vertices that are touched by at least a single selected faces static size_t VertexFromFaceLoose(MeshType &m) { size_t selCnt=0; ClearVertex(m); FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() && (*fi).IsS()) { if( !(*fi).V(0)->IsS()) { (*fi).V(0)->SetS(); ++selCnt; } if( !(*fi).V(1)->IsS()) { (*fi).V(1)->SetS(); ++selCnt; } if( !(*fi).V(2)->IsS()) { (*fi).V(2)->SetS(); ++selCnt; } } return selCnt; } /// \brief Select ONLY the vertices that are touched ONLY by selected faces /** In other words all the vertices having all the faces incident on them selected. \warning Isolated vertices will not selected. */ static size_t VertexFromFaceStrict(MeshType &m) { VertexFromFaceLoose(m); FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() && !(*fi).IsS()) { (*fi).V(0)->ClearS(); (*fi).V(1)->ClearS(); (*fi).V(2)->ClearS(); } return CountVertex(m); } /// \brief Select ONLY the faces with ALL the vertices selected static size_t FaceFromVertexStrict(MeshType &m) { size_t selCnt=0; ClearFace(m); FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD()) { if((*fi).V(0)->IsS() && (*fi).V(1)->IsS() && (*fi).V(2)->IsS()) { (*fi).SetS(); ++selCnt; } } return selCnt; } /// \brief Select all the faces with at least one selected vertex static size_t FaceFromVertexLoose(MeshType &m) { size_t selCnt=0; ClearFace(m); FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() && !(*fi).IsS()) { if((*fi).V(0)->IsS() || (*fi).V(1)->IsS() || (*fi).V(2)->IsS()) { (*fi).SetS(); ++selCnt; } } return selCnt; } static size_t VertexFromBorderFlag(MeshType &m) { size_t selCnt=0; ClearVertex(m); VertexIterator vi; for(vi = m.vert.begin(); vi != m.vert.end(); ++vi) if( !(*vi).IsD() ) { if((*vi).IsB() ) { (*vi).SetS(); ++selCnt; } } return selCnt; } static size_t FaceFromBorderFlag(MeshType &m) { size_t selCnt=0; ClearFace(m); FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() ) { if((*fi).IsB(0) || (*fi).IsB(1) || (*fi).IsB(2)) { (*fi).SetS(); ++selCnt; } } return selCnt; } /// \brief This function select the faces that have an edge outside the given range. static size_t FaceOutOfRangeEdge(MeshType &m, ScalarType MinEdgeThr=0, ScalarType MaxEdgeThr=(std::numeric_limits::max)()) { FaceIterator fi; size_t count_fd = 0; MinEdgeThr=MinEdgeThr*MinEdgeThr; MaxEdgeThr=MaxEdgeThr*MaxEdgeThr; for(fi=m.face.begin(); fi!=m.face.end();++fi) if(!(*fi).IsD()) { for(unsigned int i=0;i<3;++i) { const ScalarType squaredEdge=SquaredDistance((*fi).V0(i)->cP(),(*fi).V1(i)->cP()); if((squaredEdge<=MinEdgeThr) || (squaredEdge>=MaxEdgeThr) ) { count_fd++; (*fi).SetS(); break; // skip the rest of the edges of the tri } } } return count_fd; } /// \brief This function expand current selection to cover the whole connected component. static size_t FaceConnectedFF(MeshType &m) { // it also assumes that the FF adjacency is well computed. assert (HasFFAdjacency(m)); UpdateFlags::FaceClearV(m); std::deque visitStack; size_t selCnt=0; FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if( !(*fi).IsD() && (*fi).IsS() && !(*fi).IsV() ) visitStack.push_back(&*fi); while(!visitStack.empty()) { FacePointer fp = visitStack.front(); visitStack.pop_front(); assert(!fp->IsV()); fp->SetV(); for(int i=0;i<3;++i) { FacePointer ff = fp->FFp(i); if(! ff->IsS()) { ff->SetS(); ++selCnt; visitStack.push_back(ff); assert(!ff->IsV()); } } } return selCnt; } /// \brief Select ONLY the faces whose quality is in the specified closed interval. static size_t FaceFromQualityRange(MeshType &m,float minq, float maxq) { size_t selCnt=0; ClearFace(m); FaceIterator fi; assert(HasPerFaceQuality(m)); for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { if( (*fi).Q()>=minq && (*fi).Q()<=maxq ) { (*fi).SetS(); ++selCnt; } } return selCnt; } /// \brief Select ONLY the vertices whose quality is in the specified closed interval. static size_t VertexFromQualityRange(MeshType &m,float minq, float maxq) { size_t selCnt=0; ClearVertex(m); VertexIterator vi; assert(HasPerVertexQuality(m)); for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) { if( (*vi).Q()>=minq && (*vi).Q()<=maxq ) { (*vi).SetS(); ++selCnt; } } return selCnt; } static int VertexInBox( MeshType & m, const Box3Type &bb) { int selCnt=0; for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) { if(bb.IsIn((*vi).cP()) ) { (*vi).SetS(); ++selCnt; } } return selCnt; } void VertexNonManifoldEdges(MeshType &m) { assert(HasFFTopology(m)); VertexClear(m); for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) { for(int i=0;i<3;++i) if(!IsManifold(*fi,i)){ (*fi).V0(i)->SetS(); (*fi).V1(i)->SetS(); } } } }; // end class } // End namespace } // End namespace #endif