/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.20 2008/04/04 10:27:34 cignoni minor changes to the topology correctness checks Revision 1.19 2007/05/29 00:07:06 ponchio VFi++ -> ++VFi Revision 1.18 2006/02/27 19:26:14 spinelli minor bug in Face-Face topology loop fixed Revision 1.17 2006/02/27 11:56:48 spinelli minor bug in Face-Face topology loop fixed Revision 1.16 2005/11/10 15:36:42 cignoni Added clarifying comment in an assert Revision 1.15 2004/10/20 07:33:10 cignoni removed FaceBorderFlags (already present in update/flags.h) Revision 1.14 2004/10/18 17:10:22 ganovelli added ::FaceBorderFLags Revision 1.13 2004/10/01 15:58:00 ponchio Added include Revision 1.12 2004/09/09 13:02:12 ponchio Linux compatible path in #include Revision 1.11 2004/08/07 16:18:20 pietroni addet testFFTopology and testVFTopology functions used to test the rispective topology.... Revision 1.10 2004/07/15 11:35:08 ganovelli Vfb to VFp Revision 1.9 2004/07/15 00:13:39 cignoni Better doxigen documentation Revision 1.8 2004/06/02 16:42:44 ganovelli typename for gcc compilation Revision 1.7 2004/06/02 16:28:22 ganovelli minor changes (swap =>> math::Swap) Revision 1.6 2004/05/10 15:23:43 cignoni Changed a FV -> VF in VertexFace topology computation Revision 1.5 2004/05/06 15:24:38 pietroni changed names to topology functions Revision 1.4 2004/03/31 14:44:43 cignoni Added Vertex-Face Topology Revision 1.3 2004/03/12 15:22:19 cignoni Written some documentation and added to the trimes doxygen module Revision 1.2 2004/03/05 21:49:21 cignoni First working version for face face Revision 1.1 2004/03/04 00:53:24 cignoni Initial commit ****************************************************************************/ #ifndef __VCG_TRI_UPDATE_TOPOLOGY #define __VCG_TRI_UPDATE_TOPOLOGY #include #include #include #include namespace vcg { namespace tri { /// \ingroup trimesh /// \headerfile topology.h vcg/complex/algorithms/update/topology.h /// \brief Generation of per-vertex and per-face topological information. template class UpdateTopology { public: typedef UpdateMeshType MeshType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; /// \headerfile topology.h vcg/complex/algorithms/update/topology.h /// \brief Auxiliairy data structure for computing face face adjacency information. /** It identifies and edge storing two vertex pointer and a face pointer where it belong. */ class PEdge { public: VertexPointer v[2]; // the two Vertex pointer are ordered! FacePointer f; // the face where this edge belong int z; // index in [0..2] of the edge of the face PEdge() {} void Set( FacePointer pf, const int nz ) { assert(pf!=0); assert(nz>=0); assert(nzVN()); v[0] = pf->V(nz); v[1] = pf->V(pf->Next(nz)); assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes) if( v[0] > v[1] ) math::Swap(v[0],v[1]); f = pf; z = nz; } inline bool operator < ( const PEdge & pe ) const { if( v[0]pe.v[0] ) return false; else return v[1] < pe.v[1]; } inline bool operator == ( const PEdge & pe ) const { return v[0]==pe.v[0] && v[1]==pe.v[1]; } }; // Fill a vector with all the edges of the mesh. // each edge is stored in the vector the number of times that it appears in the mesh, with the referring face. // optionally it can skip the faux edges (to retrieve only the real edges of a triangulated polygonal mesh) static void FillEdgeVector(MeshType &m, std::vector &e, bool includeFauxEdge=true) { FaceIterator pf; typename std::vector::iterator p; // Alloco il vettore ausiliario //e.resize(m.fn*3); FaceIterator fi; int n_edges = 0; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN(); e.resize(n_edges); p = e.begin(); for(pf=m.face.begin();pf!=m.face.end();++pf) if( ! (*pf).IsD() ) for(int j=0;j<(*pf).VN();++j) if(includeFauxEdge || !(*pf).IsF(j)) { (*p).Set(&(*pf),j); ++p; } if(includeFauxEdge) assert(p==e.end()); else e.resize(p-e.begin()); } static void FillUniqueEdgeVector(MeshType &m, std::vector &Edges, bool includeFauxEdge=true) { FillEdgeVector(m,Edges,includeFauxEdge); sort(Edges.begin(), Edges.end()); // Lo ordino per vertici typename std::vector< PEdge>::iterator newEnd = std::unique(Edges.begin(), Edges.end()); typename std::vector::iterator ei; Edges.resize(newEnd-Edges.begin()); } /// \brief Update the Face-Face topological relation by allowing to retrieve for each face what other faces shares their edges. static void FaceFace(MeshType &m) { assert(HasFFAdjacency(m)); if( m.fn == 0 ) return; std::vector e; FillEdgeVector(m,e); sort(e.begin(), e.end()); // Lo ordino per vertici int ne = 0; // Numero di edge reali typename std::vector::iterator pe,ps; ps = e.begin();pe=e.begin(); //for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario do { if( pe==e.end() || !(*pe == *ps) ) // Trovo blocco di edge uguali { typename std::vector::iterator q,q_next; for (q=ps;q=0); //assert((*q).z< 3); q_next = q; ++q_next; assert((*q_next).z>=0); assert((*q_next).z< (*q_next).f->VN()); (*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce (*q).f->FFi(q->z) = (*q_next).z; } assert((*q).z>=0); assert((*q).z< (*q).f->VN()); (*q).f->FFp((*q).z) = ps->f; (*q).f->FFi((*q).z) = ps->z; ps = pe; ++ne; // Aggiorno il numero di edge } if(pe==e.end()) break; ++pe; } while(true); } /// \brief Update the Vertex-Face topological relation. /** The function allows to retrieve for each vertex the list of faces sharing this vertex. */ static void VertexFace(MeshType &m) { if(!m.HasVFTopology()) return; VertexIterator vi; FaceIterator fi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) { (*vi).VFp() = 0; (*vi).VFi() = 0; } for(fi=m.face.begin();fi!=m.face.end();++fi) if( ! (*fi).IsD() ) { for(int j=0;j<(*fi).VN();++j) { (*fi).VFp(j) = (*fi).V(j)->VFp(); (*fi).VFi(j) = (*fi).V(j)->VFi(); (*fi).V(j)->VFp() = &(*fi); (*fi).V(j)->VFi() = j; } } } /// \headerfile topology.h vcg/complex/algorithms/update/topology.h /// \brief Auxiliairy data structure for computing face face adjacency information. /** It identifies and edge storing two vertex pointer and a face pointer where it belong. */ class PEdgeTex { public: typename FaceType::TexCoordType v[2]; // the two Vertex pointer are ordered! FacePointer f; // the face where this edge belong int z; // index in [0..2] of the edge of the face PEdgeTex() {} void Set( FacePointer pf, const int nz ) { assert(pf!=0); assert(nz>=0); assert(nz<3); v[0] = pf->WT(nz); v[1] = pf->WT(pf->Next(nz)); assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes) if( v[1] < v[0] ) std::swap(v[0],v[1]); f = pf; z = nz; } inline bool operator < ( const PEdgeTex & pe ) const { if( v[0] e; FaceIterator pf; typename std::vector::iterator p; if( m.fn == 0 ) return; // e.resize(m.fn*3); // Alloco il vettore ausiliario FaceIterator fi; int n_edges = 0; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN(); e.resize(n_edges); p = e.begin(); for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce if( ! (*pf).IsD() ) for(int j=0;j<(*pf).VN();++j) { if( (*pf).WT(j) != (*pf).WT((*pf).Next(j))) { (*p).Set(&(*pf),j); ++p; } } e.resize(p-e.begin()); // remove from the end of the edge vector the unitiailized ones assert(p==e.end()); sort(e.begin(), e.end()); int ne = 0; // number of real edges typename std::vector::iterator pe,ps; ps = e.begin();pe=e.begin(); //for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario do { if( pe==e.end() || (*pe) != (*ps) ) // Trovo blocco di edge uguali { typename std::vector::iterator q,q_next; for (q=ps;q=0); assert((*q).z< 3); q_next = q; ++q_next; assert((*q_next).z>=0); assert((*q_next).z< (*q_next).f->VN()); (*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce (*q).f->FFi(q->z) = (*q_next).z; } assert((*q).z>=0); assert((*q).z< (*q).f->VN()); (*q).f->FFp((*q).z) = ps->f; (*q).f->FFi((*q).z) = ps->z; ps = pe; ++ne; // Aggiorno il numero di edge } if(pe==e.end()) break; ++pe; } while(true); } /// \brief Test correctness of VFtopology static void TestVertexFace(MeshType &m) { SimpleTempData numVertex(m.vert,0); if(!m.HasVFTopology()) return; FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) { if (!(*fi).IsD()) { numVertex[(*fi).V0(0)]++; numVertex[(*fi).V1(0)]++; numVertex[(*fi).V2(0)]++; } } VertexIterator vi; vcg::face::VFIterator VFi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) { if (!vi->IsD()) if(vi->VFp()!=0) // unreferenced vertices MUST have VF == 0; { int num=0; assert(vi->VFp() >= &*m.face.begin()); assert(vi->VFp() <= &m.face.back()); VFi.f=vi->VFp(); VFi.z=vi->VFi(); while (!VFi.End()) { num++; assert(!VFi.F()->IsD()); assert((VFi.F()->V(VFi.I()))==&(*vi)); ++VFi; } int num1=numVertex[&(*vi)]; assert(num==num1); /*assert(num>1);*/ } } } /// \brief Test correctness of FFtopology (only for 2Manifold Meshes!) static void TestFaceFace(MeshType &m) { if(!m.HasFFTopology()) return; for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) { if (!fi->IsD()) { for (int i=0;i<(*fi).VN();i++) { FaceType *ffpi=fi->FFp(i); int e=fi->FFi(i); //invariant property of FF topology for two manifold meshes assert(ffpi->FFp(e) == &(*fi)); assert(ffpi->FFi(e) == i); // Test that the two faces shares the same edge // Vertices of the i-th edges of the first face VertexPointer v0i= fi->V0(i); VertexPointer v1i= fi->V1(i); // Vertices of the corresponding edge on the other face VertexPointer ffv0i= ffpi->V0(e); VertexPointer ffv1i= ffpi->V1(e); assert( (ffv0i==v0i) || (ffv0i==v1i) ); assert( (ffv1i==v0i) || (ffv1i==v1i) ); } } } } }; // end class } // End namespace } // End namespace #endif