#include #include #include #include using namespace std; // stuff to define the mesh #include #include #include #include #include #include // io #include #include // update #include // local optimization #include #include using namespace vcg; using namespace tri; /********************************************************** Mesh Classes for Quadric Edge collapse based simplification For edge collpases we need verteses with: - V->F adjacency - per vertex incremental mark - per vertex Normal Moreover for using a quadric based collapse the vertex class must have also a Quadric member Q(); Otherwise the user have to provide an helper function object to recover the quadric. ******************************************************/ // The class prototypes. class MyVertex; class MyEdge; class MyFace; class MyVertex : public VertexSimp2< MyVertex, MyEdge, MyFace, vertex::VFAdj, vertex::Coord3f, vertex::Normal3f, vertex::Mark, vertex::BitFlags >{ public: vcg::math::Quadric &Qd() {return q;} private: math::Quadric q; }; class DummyType; class MyEdge : public EdgeSimp2 { public: inline MyEdge() {}; inline MyEdge( MyVertex * v0, MyVertex * v1){V(0) = v0; V(1) = v1; }; static inline MyEdge OrderedEdge(MyVertex* v0,MyVertex* v1){ if(v0 &e):Edge(e){}; }; class MyFace : public FaceSimp2 < MyVertex, MyEdge, MyFace, face::VFAdj, face::VertexRef, face::BitFlags > {}; /// the main mesh class class MyMesh : public vcg::tri::TriMesh, std::vector > {}; class MyTriEdgeCollapse: public vcg::tri::TriEdgeCollapseQuadric< MyMesh, MyTriEdgeCollapse, QInfoStandard > { public: typedef vcg::tri::TriEdgeCollapseQuadric< MyMesh, MyTriEdgeCollapse, QInfoStandard > TECQ; typedef MyMesh::VertexType::EdgeType EdgeType; inline MyTriEdgeCollapse( const EdgeType &p, int i) :TECQ(p,i){} }; void Usage() { printf( "---------------------------------\n" " TriSimp V.1.0 \n" " http://vcg.isti.cnr.it\n" " http://vcg.sourceforge.net\n" " release date: "__DATE__"\n" "---------------------------------\n\n" "TriDecimator 1.0 \n"__DATE__"\n" "Copyright 2003-2006 Visual Computing Lab I.S.T.I. C.N.R.\n" "\nUsage: "\ "tridecimator file1 file2 face_num [opt]\n"\ "Where opt can be:\n"\ " -e# QuadricError threshold (range [0,inf) default inf)\n" " -b# Boundary Weight (default .5)\n" " -q# Quality threshold (range [0.0, 0.866], default .3 )\n" " -n# Normal threshold (degree range [0,180] default 90)\n" " -E# Minimal admitted quadric value (default 1e-15, must be >0)\n" " -Q[y|n] Use or not Quality Threshold (default yes)\n" " -N[y|n] Use or not Normal Threshold (default no)\n" " -A[y|n] Use or not Area Weighted Quadrics (default yes)\n" " -O[y|n] Use or not vertex optimal placement (default yes)\n" " -S[y|n] Use or not Scale Independent quadric measure(default yes) \n" " -B[y|n] Preserve or not mesh boundary (default no)\n" " -T[y|n] Preserve or not Topology (default no)\n" " -H[y|n] Use or not Safe Heap Update (default no)\n" " -P Before simplification, remove duplicate & unreferenced vertices\n" ); exit(-1); } // mesh to simplify MyMesh mesh; int main(int argc ,char**argv){ if(argc<4) Usage(); int FinalSize=atoi(argv[3]); //int t0=clock(); int err=vcg::tri::io::Importer::Open(mesh,argv[1]); if(err) { printf("Unable to open mesh %s : '%s'\n",argv[1],vcg::tri::io::Importer::ErrorMsg(err)); exit(-1); } printf("mesh loaded %d %d \n",mesh.vn,mesh.fn); TriEdgeCollapseQuadricParameter &qparams = MyTriEdgeCollapse::Params() ; MyTriEdgeCollapse::SetDefaultParams(); qparams.QualityThr =.3; float TargetError=numeric_limits::max(); bool CleaningFlag =false; // parse command line. for(int i=4; i < argc;) { if(argv[i][0]=='-') switch(argv[i][1]) { case 'H' : MyTriEdgeCollapse::Params().SafeHeapUpdate=true; printf("Using Safe heap option\n"); break; case 'Q' : if(argv[i][2]=='y') { qparams.QualityCheck = true; printf("Using Quality Checking\n"); } else { qparams.QualityCheck = false; printf("NOT Using Quality Checking\n"); } break; case 'N' : if(argv[i][2]=='y') { qparams.NormalCheck = true; printf("Using Normal Deviation Checking\n"); } else { qparams.NormalCheck = false; printf("NOT Using Normal Deviation Checking\n"); } break; case 'O' : if(argv[i][2]=='y') { qparams.OptimalPlacement = true; printf("Using OptimalPlacement\n"); } else { qparams.OptimalPlacement = false; printf("NOT Using OptimalPlacement\n"); } break; case 'S' : if(argv[i][2]=='y') { qparams.ScaleIndependent = true; printf("Using ScaleIndependent\n"); } else { qparams.ScaleIndependent = false; printf("NOT Using ScaleIndependent\n"); } break; case 'B' : if(argv[i][2]=='y') { qparams.PreserveBoundary = true; printf("Preserving Boundary\n"); } else { qparams.PreserveBoundary = false; printf("NOT Preserving Boundary\n"); } break; case 'T' : if(argv[i][2]=='y') { qparams.PreserveTopology = true; printf("Preserving Topology\n"); } else { qparams.PreserveTopology = false; printf("NOT Preserving Topology\n"); } break; case 'q' : qparams.QualityThr = atof(argv[i]+2); printf("Setting Quality Thr to %f\n",atof(argv[i]+2)); break; case 'n' : qparams.NormalThrRad = math::ToRad(atof(argv[i]+2)); printf("Setting Normal Thr to %f deg\n",atof(argv[i]+2)); break; case 'b' : qparams.BoundaryWeight = atof(argv[i]+2); printf("Setting Boundary Weight to %f\n",atof(argv[i]+2)); break; case 'e' : TargetError = float(atof(argv[i]+2)); printf("Setting TargetError to %g\n",atof(argv[i]+2)); break; case 'P' : CleaningFlag=true; printf("Cleaning mesh before simplification\n"); break; default : printf("Unknown option '%s'\n", argv[i]); exit(0); } i++; } if(CleaningFlag){ int dup = tri::Clean::RemoveDuplicateVertex(mesh); int unref = tri::Clean::RemoveUnreferencedVertex(mesh); printf("Removed %i duplicate and %i unreferenced vertices from mesh \n",dup,unref); } printf("reducing it to %i\n",FinalSize); vcg::tri::UpdateBounding::Box(mesh); // decimator initialization vcg::LocalOptimization DeciSession(mesh); int t1=clock(); DeciSession.Init(); int t2=clock(); printf("Initial Heap Size %i\n",DeciSession.h.size()); DeciSession.SetTargetSimplices(FinalSize); DeciSession.SetTimeBudget(0.5f); if(TargetError< numeric_limits::max() ) DeciSession.SetTargetMetric(TargetError); while(DeciSession.DoOptimization() && mesh.fn>FinalSize && DeciSession.currMetric < TargetError) printf("Current Mesh size %7i heap sz %9i err %9g \r",mesh.fn,DeciSession.h.size(),DeciSession.currMetric); int t3=clock(); printf("mesh %d %d Error %g \n",mesh.vn,mesh.fn,DeciSession.currMetric); printf("\nCompleted in (%i+%i) msec\n",t2-t1,t3-t2); vcg::tri::io::ExporterPLY::Save(mesh,argv[2]); return 0; }