/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef _VCG_FACE_TOPOLOGY #define _VCG_FACE_TOPOLOGY #include #include #include namespace vcg { namespace face { /** \addtogroup face */ /*@{*/ /** Return a boolean that indicate if the face is complex. @param j Index of the edge @return true se la faccia e' manifold, false altrimenti */ template inline bool IsManifold( FaceType const & f, const int j ) { assert(f.cFFp(j) != 0); // never try to use this on uncomputed topology if(FaceType::HasFFAdjacency()) return ( f.cFFp(j) == &f || &f == f.cFFp(j)->cFFp(f.cFFi(j)) ); else return true; } /** Return a boolean that indicate if the j-th edge of the face is a border. @param j Index of the edge @return true if j is an edge of border, false otherwise */ template inline bool IsBorder(FaceType const & f, const int j ) { if(FaceType::HasFFAdjacency()) return f.cFFp(j)==&f; //return f.IsBorder(j); assert(0); return true; } /// Count border edges of the face template inline int BorderCount(FaceType const & f) { if(FaceType::HasFFAdjacency()) { int t = 0; if( IsBorder(f,0) ) ++t; if( IsBorder(f,1) ) ++t; if( IsBorder(f,2) ) ++t; return t; } else return 3; } /// Counts the number of incident faces in a complex edge template inline int ComplexSize(FaceType & f, const int e) { if(FaceType::HasFFAdjacency()) { if(face::IsBorder(f,e)) return 1; if(face::IsManifold(f,e)) return 2; // Non manifold case Pos< FaceType > fpos(&f,e); int cnt=0; do { fpos.NextF(); assert(!fpos.IsBorder()); assert(!fpos.IsManifold()); ++cnt; } while(fpos.f!=&f); assert (cnt>2); return cnt; } assert(0); return 2; } /** This function check the FF topology correctness for an edge of a face. It's possible to use it also in non-two manifold situation. The function cannot be applicated if the adjacencies among faces aren't defined. @param f the face to be checked @param e Index of the edge to be checked */ template bool FFCorrectness(FaceType & f, const int e) { if(f.FFp(e)==0) return false; // Not computed or inconsistent topology if(f.FFp(e)==&f) // Border { if(f.FFi(e)==e) return true; else return false; } if(f.FFp(e)->FFp(f.FFi(e))==&f) // plain two manifold { if(f.FFp(e)->FFi(f.FFi(e))==e) return true; else return false; } // Non Manifold Case // all the faces must be connected in a loop. Pos< FaceType > curFace(&f,e); // Build the half edge int cnt=0; do { if(curFace.IsManifold()) return false; if(curFace.IsBorder()) return false; curFace.NextF(); cnt++; assert(cnt<100); } while ( curFace.f != &f); return true; } /** This function detach the face from the adjacent face via the edge e. It's possible to use this function it ONLY in non-two manifold situation. The function cannot be applicated if the adjacencies among faces aren't defined. @param f the face to be detached @param e Index of the edge to be detached */ template void FFDetachManifold(FaceType & f, const int e) { assert(FFCorrectness(f,e)); assert(!IsBorder(f,e)); // Never try to detach a border edge! FaceType *ffp = f.FFp(e); //int ffi=f.FFp(e); int ffi=f.FFi(e); f.FFp(e)=&f; f.FFi(e)=e; ffp->FFp(ffi)=ffp; ffp->FFi(ffi)=ffi; f.SetB(e); f.ClearF(e); ffp->SetB(ffi); ffp->ClearF(ffi); assert(FFCorrectness(f,e)); assert(FFCorrectness(*ffp,ffi)); } /** This function detach the face from the adjacent face via the edge e. It's possible to use it also in non-two manifold situation. The function cannot be applicated if the adjacencies among faces aren't defined. @param f the face to be detached @param e Index of the edge to be detached */ template void FFDetach(FaceType & f, const int e) { assert(FFCorrectness(f,e)); assert(!IsBorder(f,e)); // Never try to detach a border edge! int complexity; assert(complexity=ComplexSize(f,e)); Pos< FaceType > FirstFace(&f,e); // Build the half edge Pos< FaceType > LastFace(&f,e); // Build the half edge FirstFace.NextF(); LastFace.NextF(); int cnt=0; // then in case of non manifold face continue to advance LastFace // until I find it become the one that // preceed the face I want to erase while ( LastFace.f->FFp(LastFace.z) != &f) { assert(ComplexSize(*LastFace.f,LastFace.z)==complexity); assert(!LastFace.IsManifold()); // We enter in this loop only if we are on a non manifold edge assert(!LastFace.IsBorder()); LastFace.NextF(); cnt++; assert(cnt<100); } assert(LastFace.f->FFp(LastFace.z)==&f); assert(f.FFp(e)== FirstFace.f); // Now we link the last one to the first one, skipping the face to be detached; LastFace.f->FFp(LastFace.z) = FirstFace.f; LastFace.f->FFi(LastFace.z) = FirstFace.z; assert(ComplexSize(*LastFace.f,LastFace.z)==complexity-1); // At the end selfconnect the chosen edge to make a border. f.FFp(e) = &f; f.FFi(e) = e; assert(ComplexSize(f,e)==1); assert(FFCorrectness(*LastFace.f,LastFace.z)); assert(FFCorrectness(f,e)); } /** This function attach the face (via the edge z1) to another face (via the edge z2). It's possible to use it also in non-two manifold situation. The function cannot be applicated if the adjacencies among faces aren't define. @param z1 Index of the edge @param f2 Pointer to the face @param z2 The edge of the face f2 */ template void Attach(FaceType * &f, int z1, FaceType *&f2, int z2) { //typedef FEdgePosB< FACE_TYPE > ETYPE; Pos< FaceType > EPB(f2,z2); Pos< FaceType > TEPB; TEPB = EPB; EPB.NextF(); while( EPB.f != f2) //Alla fine del ciclo TEPB contiene la faccia che precede f2 { TEPB = EPB; EPB.NextF(); } //Salvo i dati di f1 prima di sovrascrivere FaceType *f1prec = f.FFp(z1); int z1prec = f.FFi(z1); //Aggiorno f1 f->FFp(z1) = TEPB.f->FFp(TEPB.z); f->FFi(z1) = TEPB.f->FFi(TEPB.z); //Aggiorno la faccia che precede f2 TEPB.f->FFp(TEPB.z) = f1prec; TEPB.f->FFi(TEPB.z) = z1prec; } template void AssertAdj(FaceType & f) { assert(f.FFp(0)->FFp(f.FFi(0))==&f); assert(f.FFp(1)->FFp(f.FFi(1))==&f); assert(f.FFp(2)->FFp(f.FFi(2))==&f); assert(f.FFp(0)->FFi(f.FFi(0))==0); assert(f.FFp(1)->FFi(f.FFi(1))==1); assert(f.FFp(2)->FFi(f.FFi(2))==2); } // Funzione di supporto usata da swap? //template //inline void Nexts( *&f, int &z ) //{ // int t; // t = z; // z = (*f).Z(z); // f = (*f).F(t); //} /** * Check if the given face is oriented as the one adjacent to the specified edge. * @param f Face to check the orientation * @param z Index of the edge */ template bool CheckOrientation(FaceType &f, int z) { if (IsBorder(f, z)) return true; else { FaceType *g = f.FFp(z); int gi = f.FFi(z); if (f.V0(z) == g->V1(gi)) return true; else return false; } } /** * This function change the orientation of the face by inverting the index of two vertex. * @param z Index of the edge */ template void SwapEdge(FaceType &f, const int z) { SwapEdge(f,z); } template void SwapEdge(FaceType &f, const int z) { // swap V0(z) with V1(z) std::swap(f.V0(z), f.V1(z)); if(f.HasFFAdjacency() && UpdateTopology) { // store information to preserve topology int z1 = (z+1)%3; int z2 = (z+2)%3; FaceType *g1p = f.FFp(z1); FaceType *g2p = f.FFp(z2); int g1i = f.FFi(z1); int g2i = f.FFi(z2); // g0 face topology is not affected by the swap if (g1p != &f) { g1p->FFi(g1i) = z2; f.FFi(z2) = g1i; } else { f.FFi(z2) = z2; } if (g2p != &f) { g2p->FFi(g2i) = z1; f.FFi(z1) = g2i; } else { f.FFi(z1) = z1; } // finalize swap f.FFp(z1) = g2p; f.FFp(z2) = g1p; } } /*! * Check if the z-th edge of the face f can be flipped. * \param f pointer to the face * \param z the edge index */ template static bool CheckFlipEdge(FaceType &f, int z) { typedef typename FaceType::VertexType VertexType; typedef typename vcg::face::Pos< FaceType > PosType; if (z<0 || z>2) return false; // boundary edges cannot be flipped if (face::IsBorder(f, z)) return false; FaceType *g = f.FFp(z); int w = f.FFi(z); // check if the vertices of the edge are the same // e.g. the mesh has to be well oriented if (g->V(w)!=f.V1(z) || g->V1(w)!=f.V(z) ) return false; // check if the flipped edge is already present in the mesh // f_v2 and g_v2 are the vertices of the new edge VertexType *f_v2 = f.V2(z); VertexType *g_v2 = g->V2(w); // just a sanity check. If this happens the mesh is not manifold. if (f_v2 == g_v2) return false; // Now walk around f_v2, one of the two vertexes of the new edge // and check that it does not already exists. PosType pos(&f, (z+2)%3, f_v2); PosType startPos=pos; do { pos.NextE(); if (g_v2 == pos.VFlip()) return false; } while (pos != startPos); return true; } /*! * Flip the z-th edge of the face f. * Check for topological correctness first using CheckFlipFace(). * \param f pointer to the face * \param z the edge index * * Note: For edge flip we intend the swap of the diagonal of the rectangle * formed by the face \a f and the face adjacent to the specified edge. */ template static void FlipEdge(FaceType &f, const int z) { assert(z>=0); assert(z<3); assert( !IsBorder(f,z) ); assert( face::IsManifold(f, z)); FaceType *g = f.FFp(z); int w = f.FFi(z); assert( g->V(w) == f.V1(z) ); assert( g->V1(w)== f.V(z) ); assert( g->V2(w)!= f.V(z) ); assert( g->V2(w)!= f.V1(z) ); assert( g->V2(w)!= f.V2(z) ); f.V1(z) = g->V2(w); g->V1(w) = f.V2(z); f.FFp(z) = g->FFp((w+1)%3); f.FFi(z) = g->FFi((w+1)%3); g->FFp(w) = f.FFp((z+1)%3); g->FFi(w) = f.FFi((z+1)%3); f.FFp((z+1)%3) = g; f.FFi((z+1)%3) = (w+1)%3; g->FFp((w+1)%3) = &f; g->FFi((w+1)%3) = (z+1)%3; if(f.FFp(z)==g) { f.FFp(z) = &f; f.FFi(z) = z; } else { f.FFp(z)->FFp( f.FFi(z) ) = &f; f.FFp(z)->FFi( f.FFi(z) ) = z; } if(g->FFp(w)==&f) { g->FFp(w)=g; g->FFi(w)=w; } else { g->FFp(w)->FFp( g->FFi(w) ) = g; g->FFp(w)->FFi( g->FFi(w) ) = w; } } // Stacca la faccia corrente dalla catena di facce incidenti sul vertice z, // NOTA funziona SOLO per la topologia VF!!! // usata nelle classi di collapse template void VFDetach(FaceType & f, int z) { if(f.V(z)->VFp()==&f ) //if it is the first face detach from the begin { int fz = f.V(z)->VFi(); f.V(z)->VFp() = f.VFp(fz); f.V(z)->VFi() = f.VFi(fz); } else // scan the list of faces in order to finde the current face f to be detached { VFIterator x(f.V(z)->VFp(),f.V(z)->VFi()); VFIterator y; for(;;) { y = x; ++x; assert(x.f!=0); if(x.f==&f) // found! { y.f->VFp(y.z) = f.VFp(z); y.f->VFi(y.z) = f.VFi(z); break; } } } } /// Append a face in VF list of vertex f->V(z) template void VFAppend(FaceType* & f, int z) { typename FaceType::VertexType *v = f->V(z); if (v->VFp()!=0) { FaceType *f0=v->VFp(); int z0=v->VFi(); //append f->VFp(z)=f0; f->VFi(z)=z0; } v->VFp()=f; v->VFi()=z; } /*! * Compute the set of vertices adjacent to a given vertex using VF adjacency. * \param vp pointer to the vertex whose star has to be computed. * \param starVec a std::vector of Vertex pointer that is filled with the adjacent vertices. * */ template void VVStarVF( typename FaceType::VertexType* vp, std::vector &starVec) { typedef typename FaceType::VertexType* VertexPointer; starVec.clear(); face::VFIterator vfi(vp); while(!vfi.End()) { starVec.push_back(vfi.F()->V1(vfi.I())); starVec.push_back(vfi.F()->V2(vfi.I())); ++vfi; } std::sort(starVec.begin(),starVec.end()); typename std::vector::iterator new_end = std::unique(starVec.begin(),starVec.end()); starVec.resize(new_end-starVec.begin()); } /*! * Check if two faces share and edge through the FF topology. * \param f0,f1 the two face to be checked * \param i0,i1 the index of the shared edge; */ template bool ShareEdgeFF(FaceType *f0,FaceType *f1, int *i0=0, int *i1=0) { assert((!f0->IsD())&&(!f1->IsD())); for (int i=0;i<3;i++) if (f0->FFp(i)==f1) { if((i0!=0) && (i1!=0)) { *i0=i; *i1=f0->FFi(i); } return true; } return false; } /*! * Count the number of vertices shared between two faces. * \param f0,f1 the two face to be checked * ; */ template int CountSharedVertex(FaceType *f0,FaceType *f1) { int sharedCnt=0; for (int i=0;i<3;i++) for (int j=0;j<3;j++) if (f0->V(i)==f1->V(j)) { sharedCnt++; } return sharedCnt; } /*! * find the first shared vertex between two faces. * \param f0,f1 the two face to be checked * \param i,j the indexes of the shared vertex in the two faces. Meaningful only if there is one single shared vertex * ; */ template bool SharedVertex(FaceType *f0,FaceType *f1, int &i, int &j) { for (i=0;i<3;i++) for (j=0;j<3;j++) if (f0->V(i)==f1->V(j)) return true; return false; } /*@}*/ } // end namespace } // end namespace #endif