/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.15 2007/11/05 23:47:20 cignoni added selection to the pasodoble smoothing Revision 1.14 2007/03/27 09:40:47 cignoni Changed use of selected to visited flags. Improved variable namings and comments Revision 1.13 2006/11/07 15:13:56 zifnab1974 Necessary changes for compilation with gcc 3.4.6. Especially the hash function is a problem Revision 1.12 2006/11/07 11:28:02 cignoni Added Quality weighted laplacian smoothing Revision 1.11 2006/10/19 07:33:03 cignoni Corrected Laplacian, Added selection to HCSmooth Revision 1.10 2006/09/25 09:41:41 cignoni Added new version of pasodoble smoothing Revision 1.9 2006/02/06 10:45:47 cignoni Added missing typenames Revision 1.7 2006/01/24 13:23:22 pietroni used template types instead of point3f and float inside function calls Revision 1.6 2005/12/06 17:55:16 pietroni 1 bug corrected Revision 1.5 2005/12/02 16:24:56 pietroni corrected 1 bug in Cross Prod Gradient Revision 1.4 2005/11/23 16:24:44 pietroni corrected CrossProdGradient( ) Revision 1.3 2005/07/11 13:12:05 cignoni small gcc-related compiling issues (typenames,ending cr, initialization order) Revision 1.2 2005/03/16 16:14:12 spinelli aggiunta funzione PasoDobleSmooth e relative: - FitMesh - FaceErrorGrad - CrossProdGradient - TriAreaGradient - NormalSmooth e le classi: - PDVertInfo - PDFaceInfo necessarie per utilizzare SimpleTempData Revision 1.1 2004/12/11 14:53:19 ganovelli first partial porting: compiled gcc,intel and msvc ****************************************************************************/ #ifndef __VCGLIB__SMOOTH #define __VCGLIB__SMOOTH #include #include #include #include namespace vcg { template class ScaleLaplacianInfo { public: Point3 PntSum; FLT LenSum; }; // Scale dependent laplacian smoothing [fujimori 95] // Nuova versione, l'idea e'quella di usare anche gli angoli delle facce per pesare lo spostamento. // // in pratica si sposta solo lungo la componente che e' parallela alla normale al vertice // (che si suppone esserci!!) // Non ha bisogno della topologia // Non fa assunzioni sull'ordinamento delle facce, ma vuole che i border flag ci siano! // // template void ScaleLaplacianSmooth(MESH_TYPE &m, int step, typename MESH_TYPE::ScalarType delta) { SimpleTempData > TD(m.vert); ScaleLaplacianInfo lpz; lpz.PntSum=typename MESH_TYPE::CoordType(0,0,0); lpz.LenSum=0; TD.Start(lpz); typename MESH_TYPE::FaceIterator fi; for(int i=0;iP() + (*fi).V(1)->P() + (*fi).V(2)->P())/3.0; typename MESH_TYPE::CoordType e0=((*fi).V(0)->P() - (*fi).V(1)->P()).Normalize(); typename MESH_TYPE::CoordType e1=((*fi).V(1)->P() - (*fi).V(2)->P()).Normalize(); typename MESH_TYPE::CoordType e2=((*fi).V(2)->P() - (*fi).V(0)->P()).Normalize(); a[0]=AngleN(-e0,e2); a[1]=AngleN(-e1,e0); a[2]=AngleN(-e2,e1); //assert(fabs(M_PI -a[0] -a[1] -a[2])<0.0000001); for(int j=0;j<3;++j){ typename MESH_TYPE::CoordType dir= (mp-(*fi).V(j)->P()).Normalize(); TD[(*fi).V(j)].PntSum+=dir*a[j]; TD[(*fi).V(j)].LenSum+=a[j]; } } for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].LenSum>0 ) (*vi).P() = (*vi).P() + (TD[*vi].PntSum/TD[*vi].LenSum ) * delta; } TD.Stop(); }; // Scale dependent laplacian smoothing [fujimori 95] // Non ha bisogno della topologia // Non fa assunzioni sull'ordinamento delle facce, ma vuole che i border flag ci siano! // // template void ScaleLaplacianSmoothOld(MESH_TYPE &m, int step, typename MESH_TYPE::ScalarType delta) { SimpleTempData > TD(m.vert); ScaleLaplacianInfo lpz; lpz.PntSum=typename MESH_TYPE::CoordType(0,0,0); lpz.LenSum=0; TD.Start(lpz); typename MESH_TYPE::FaceIterator fi; for(int i=0;iP() -(*fi).V(j)->P(); typename MESH_TYPE::ScalarType len=Norm(edge); edge/=len; TD[(*fi).V(j)].PntSum+=edge; TD[(*fi).V1(j)].PntSum-=edge; TD[(*fi).V(j)].LenSum+=len; TD[(*fi).V1(j)].LenSum+=len; } for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD()) for(int j=0;j<3;++j) // se l'edge j e' di bordo si riazzera tutto e si riparte if((*fi).IsB(j)) { TD[(*fi).V(j)].PntSum=typename MESH_TYPE::CoordType(0,0,0); TD[(*fi).V1(j)].PntSum=typename MESH_TYPE::CoordType(0,0,0); TD[(*fi).V(j)].LenSum=0; TD[(*fi).V1(j)].LenSum=0; } for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { typename MESH_TYPE::CoordType edge= (*fi).V1(j)->P() -(*fi).V(j)->P(); typename MESH_TYPE::ScalarType len=Norm(edge); edge/=len; TD[(*fi).V(j)].PntSum+=edge; TD[(*fi).V1(j)].PntSum-=edge; TD[(*fi).V(j)].LenSum+=len; TD[(*fi).V1(j)].LenSum+=len; } for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].LenSum>0 ) (*vi).P() = (*vi).P() + (TD[*vi].PntSum/TD[*vi].LenSum)*delta; } TD.Stop(); }; template class LaplacianInfo { public: Point3 sum; FLT cnt; }; // Classical Laplacian Smoothing. Each vertex can be moved onto the average of the adjacent vertices. // Can smooth only the selected vertices and weight the smoothing according to the quality // In the latter case 0 means that the vertex is not moved and 1 means that the vertex is moved onto the computed position. template void LaplacianSmooth(MESH_TYPE &m, int step, bool SmoothSelected=false, float QualityWeight=0) { SimpleTempData > TD(m.vert); LaplacianInfo lpz; lpz.sum=typename MESH_TYPE::CoordType(0,0,0); lpz.cnt=1; TD.Start(lpz); for(int i=0;iP(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->P(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } // si azzaera i dati per i vertici di bordo for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { //TD[(*fi).V(j)]=lpz; //TD[(*fi).V1(j)]=lpz; TD[(*fi).V0(j)].sum=(*fi).P0(j); TD[(*fi).V1(j)].sum=(*fi).P1(j); TD[(*fi).V0(j)].cnt=1; TD[(*fi).V1(j)].cnt=1; } // se l'edge j e' di bordo si deve mediare solo con gli adiacenti for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->P(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->P(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } if(QualityWeight>0) { // quality weighted smoothing // We assume that weights are in the 0..1 range. assert(tri::HasPerVertexQuality(m)); for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].cnt>0 ) if(!SmoothSelected || (*vi).IsS()) { float q=1.0-(*vi).Q(); (*vi).P()=(*vi).P()*(1.0-q) + (TD[*vi].sum/TD[*vi].cnt)*q; } } else for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].cnt>0 ) if(!SmoothSelected || (*vi).IsS()) (*vi).P()=TD[*vi].sum/TD[*vi].cnt; } TD.Stop(); }; /* Improved Laplacian Smoothing of Noisy Surface Meshes J. Vollmer, R. Mencl, and H. Müller EUROGRAPHICS Volume 18 (1999), Number 3 */ template class HCSmoothInfo { public: Point3 dif; Point3 sum; int cnt; }; template void HCSmooth(MESH_TYPE &m, int step, bool SmoothSelected=false ) { typename MESH_TYPE::ScalarType beta=0.5; SimpleTempData > TD(m.vert); HCSmoothInfo lpz; lpz.sum=typename MESH_TYPE::CoordType(0,0,0); lpz.dif=typename MESH_TYPE::CoordType(0,0,0); lpz.cnt=0; TD.Start(lpz); // First Loop compute the laplacian typename MESH_TYPE::FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD()) { for(int j=0;j<3;++j) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->P(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->P(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; // se l'edge j e' di bordo si deve sommare due volte if((*fi).IsB(j)) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->P(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->P(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } } } typename MESH_TYPE::VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) TD[*vi].sum/=(float)TD[*vi].cnt; // Second Loop compute average difference for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { for(int j=0;j<3;++j) { TD[(*fi).V(j)].dif +=TD[(*fi).V1(j)].sum-(*fi).V1(j)->P(); TD[(*fi).V1(j)].dif+=TD[(*fi).V(j)].sum-(*fi).V(j)->P(); // se l'edge j e' di bordo si deve sommare due volte if((*fi).IsB(j)) { TD[(*fi).V(j)].dif +=TD[(*fi).V1(j)].sum-(*fi).V1(j)->P(); TD[(*fi).V1(j)].dif+=TD[(*fi).V(j)].sum-(*fi).V(j)->P(); } } } for(vi=m.vert.begin();vi!=m.vert.end();++vi) { TD[*vi].dif/=(float)TD[*vi].cnt; if(!SmoothSelected || (*vi).IsS()) (*vi).P()= TD[*vi].sum - (TD[*vi].sum - (*vi).P())*beta + (TD[*vi].dif)*(1.f-beta); } TD.Stop(); }; // Laplacian smooth of the quality. template class QualitySmoothInfo { public: FLT sum; int cnt; }; template void LaplacianSmoothQuality(MESH_TYPE &m, int step,bool SmoothSelected=false) { SimpleTempData > TD(m.vert); QualitySmoothInfo lpz; lpz.sum=0; lpz.cnt=0; TD.Start(lpz); for(int i=0;iQ(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->Q(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } // si azzaera i dati per i vertici di bordo for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)]=lpz; TD[(*fi).V1(j)]=lpz; } // se l'edge j e' di bordo si deve mediare solo con gli adiacenti for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->Q(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->Q(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } //typename MESH_TYPE::VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].cnt>0 ) if(!SmoothSelected || (*vi).IsS()) (*vi).Q()=TD[*vi].sum/TD[*vi].cnt; } TD.Stop(); }; template void LaplacianSmoothNormals(MESH_TYPE &m, int step,bool SmoothSelected=false) { SimpleTempData > TD(m.vert); LaplacianInfo lpz; lpz.sum=typename MESH_TYPE::CoordType(0,0,0); lpz.cnt=0; TD.Start(lpz); for(int i=0;iN(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->N(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } // si azzaera i dati per i vertici di bordo for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)]=lpz; TD[(*fi).V1(j)]=lpz; } // se l'edge j e' di bordo si deve mediare solo con gli adiacenti for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->N(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->N(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } //typename MESH_TYPE::VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].cnt>0 ) if(!SmoothSelected || (*vi).IsS()) (*vi).N()=TD[*vi].sum/TD[*vi].cnt; } TD.Stop(); }; // Smooth solo lungo la direzione di vista // alpha e' compreso fra 0(no smoot) e 1 (tutto smoot) // Nota che se smootare il bordo puo far fare bandierine. template void DepthSmooth(MESH_TYPE &m, const typename MESH_TYPE::CoordType & viewpoint, const typename MESH_TYPE::ScalarType alpha, int step, bool SmoothBorder=false ) { typedef typename MESH_TYPE::CoordType v_type; typedef typename MESH_TYPE::ScalarType s_type; //const typename MESH_TYPE::CoordType viewpoint; //const typename MESH_TYPE::ScalarType alpha; SimpleTempData > TD(m.vert); LaplacianInfo lpz; lpz.sum=typename MESH_TYPE::CoordType(0,0,0); lpz.cnt=0; TD.Start(lpz); for(int i=0;iSupervisor_P(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->Supervisor_P(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } // si azzaera i dati per i vertici di bordo for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)]=lpz; TD[(*fi).V1(j)]=lpz; } // se l'edge j e' di bordo si deve mediare solo con gli adiacenti if(SmoothBorder) for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->Supervisor_P(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->Supervisor_P(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].cnt>0 ) { v_type np = TD[*vi].sum/TD[*vi].cnt; v_type d = (*vi).Supervisor_P() - viewpoint; d.Normalize(); s_type s = d * ( np - (*vi).Supervisor_P() ); (*vi).Supervisor_P() += d * (s*alpha); } } TD.Stop(); } /****************************************************************************************************************/ /****************************************************************************************************************/ // Paso Double Smoothing // The proposed // approach is a two step method where in the first step the face normals // are adjusted and then, in a second phase, the vertex positions are updated. /****************************************************************************************************************/ /****************************************************************************************************************/ // Classi di info template class PDVertInfo { public: Point3 np; }; template class PDFaceInfo { public: Point3 m; }; /***************************************************************************/ // Paso Doble Step 1 compute the smoothed normals /***************************************************************************/ // Requirements: // VF Topology // Normalized Face Normals // // This is the Normal Smoothing approach of Shen and Berner // Fuzzy Vector Median-Based Surface Smoothing TVCG 2004 template void NormalSmoothSB(MESH_TYPE &m, SimpleTempData > &TD, typename MESH_TYPE::ScalarType sigma) { int i; typedef typename MESH_TYPE::CoordType CoordType; typedef typename MESH_TYPE::ScalarType ScalarType; typename MESH_TYPE::FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) { CoordType bc=(*fi).Barycenter(); // 1) Clear all the visited flag of faces that are vertex-adjacent to fi for(i=0;i<3;++i) { vcg::face::VFIterator ep(&*fi,i); while (!ep.End()) { ep.f->ClearV(); ++ep; } } // 1) Effectively average the normals weighting them with (*fi).SetV(); CoordType mm=CoordType(0,0,0); for(i=0;i<3;++i) { vcg::face::VFIterator ep(&*fi,i); while (!ep.End()) { if(! (*ep.f).IsV() ) { if(sigma>0) { ScalarType dd=SquaredDistance(ep.f->Barycenter(),bc); ScalarType ang=AngleN(ep.f->N(),(*fi).N()); mm+=ep.f->N()*exp((-sigma)*ang*ang/dd); } else mm+=ep.f->N(); (*ep.f).SetV(); } ++ep; } } mm.Normalize(); TD[*fi].m=mm; } } /***************************************************************************/ // Paso Doble Step 1 compute the smoothed normals /***************************************************************************/ // Requirements: // VF Topology // Normalized Face Normals // // This is the Normal Smoothing approach bsased on a angle thresholded weighting // sigma is in the 0 .. 1 range, it represent the cosine of a threshold angle. // Only within the specified range are averaged toghether. The averagin is weighted with the template void NormalSmooth(MESH_TYPE &m, SimpleTempData > &TD, typename MESH_TYPE::ScalarType sigma) { int i; typedef typename MESH_TYPE::CoordType CoordType; typedef typename MESH_TYPE::ScalarType ScalarType; typedef typename vcg::face::VFIterator VFLocalIterator; typename MESH_TYPE::FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { CoordType bc=Barycenter(*fi); // 1) Clear all the visited flag of faces that are vertex-adjacent to fi for(i=0;i<3;++i) { VFLocalIterator ep(&*fi,i); for (;!ep.End();++ep) ep.f->ClearV(); } // 1) Effectively average the normals weighting them with the squared difference of the angle similarity // sigma is the cosine of a threshold angle. sigma \in 0..1 // sigma == 0 All the normals are averaged // sigma == 1 Nothing is averaged. // The averaging is weighted with the difference between normals. more similar the normal more important they are. CoordType normalSum=CoordType(0,0,0); for(i=0;i<3;++i) { VFLocalIterator ep(&*fi,i); for (;!ep.End();++ep) { if(! (*ep.f).IsV() ) { ScalarType cosang=ep.f->N()*(*fi).N(); if(cosang >= sigma) { ScalarType w = cosang-sigma; normalSum += ep.f->N()*(w*w); // similar normals have a cosang very close to 1 so cosang - sigma is maximized } (*ep.f).SetV(); } } } normalSum.Normalize(); TD[*fi].m=normalSum; } for(fi=m.face.begin();fi!=m.face.end();++fi) (*fi).N()=TD[*fi].m; } /****************************************************************************************************************/ // Restituisce il gradiente dell'area del triangolo nel punto p. // Nota che dovrebbe essere sempre un vettore che giace nel piano del triangolo e perpendicolare al lato opposto al vertice p. // Ottimizzato con Maple e poi pesantemente a mano. template Point3 TriAreaGradient(Point3 &p,Point3 &p0,Point3 &p1) { Point3 dd = p1-p0; Point3 d0 = p-p0; Point3 d1 = p-p1; Point3 grad; FLT t16 = d0[1]* d1[2] - d0[2]* d1[1]; FLT t5 = -d0[2]* d1[0] + d0[0]* d1[2]; FLT t4 = -d0[0]* d1[1] + d0[1]* d1[0]; FLT delta= sqrtf(t4*t4 + t5*t5 +t16*t16); grad[0]= (t5 * (-dd[2]) + t4 * ( dd[1]))/delta; grad[1]= (t16 * (-dd[2]) + t4 * (-dd[0]))/delta; grad[2]= (t16 * ( dd[1]) + t5 * ( dd[0]))/delta; return grad; } template Point3 CrossProdGradient(Point3 &p, Point3 &p0, Point3 &p1, Point3 &m) { Point3 grad; Point3 p00=p0-p; Point3 p01=p1-p; grad[0] = (-p00[2] + p01[2])*m[1] + (-p01[1] + p00[1])*m[2]; grad[1] = (-p01[2] + p00[2])*m[0] + (-p00[0] + p01[0])*m[2]; grad[2] = (-p00[1] + p01[1])*m[0] + (-p01[0] + p00[0])*m[1]; return grad; } /* Deve Calcolare il gradiente di E(p) = A(p,p0,p1) (n - m)^2 = A(...) (2-2nm) = (p0-p)^(p1-p) 2A - 2A * ------------- m = 2A 2A - 2 (p0-p)^(p1-p) * m */ template Point3 FaceErrorGrad(Point3 &p,Point3 &p0,Point3 &p1, Point3 &m) { return TriAreaGradient(p,p0,p1) *2.0f - CrossProdGradient(p,p0,p1,m) *2.0f ; } /***************************************************************************/ // Paso Doble Step 2 Fitta la mesh a un dato insieme di normali /***************************************************************************/ template void FitMesh(MESH_TYPE &m, SimpleTempData > &TDV, SimpleTempData > &TDF, float lambda) { //vcg::face::Pos ep; vcg::face::VFIterator ep; typename MESH_TYPE::VertexIterator vi; typedef typename MESH_TYPE::ScalarType ScalarType; typedef typename MESH_TYPE::CoordType CoordType; for(vi=m.vert.begin();vi!=m.vert.end();++vi) { CoordType ErrGrad=CoordType(0,0,0); ep.f=(*vi).VFp(); ep.z=(*vi).VFi(); while (!ep.End()) { ErrGrad+=FaceErrorGrad(ep.f->V(ep.z)->P(),ep.f->V1(ep.z)->P(),ep.f->V2(ep.z)->P(),TDF[ep.f].m); ++ep; } TDV[*vi].np=(*vi).P()-ErrGrad*(ScalarType)lambda; } for(vi=m.vert.begin();vi!=m.vert.end();++vi) (*vi).P()=TDV[*vi].np; } /****************************************************************************************************************/ template void FastFitMesh(MESH_TYPE &m, SimpleTempData > &TDV, SimpleTempData > &TDF, bool OnlySelected=false) { //vcg::face::Pos ep; vcg::face::VFIterator ep; typename MESH_TYPE::VertexIterator vi; typedef typename MESH_TYPE::ScalarType ScalarType; typedef typename MESH_TYPE::CoordType CoordType; typedef typename vcg::face::VFIterator VFLocalIterator; for(vi=m.vert.begin();vi!=m.vert.end();++vi) { CoordType Sum(0,0,0); ScalarType cnt=0; VFLocalIterator ep(&*vi); for (;!ep.End();++ep) { CoordType bc=Barycenter(*ep.F()); Sum += ep.F()->N()*(ep.F()->N()*(bc - (*vi).P())); ++cnt; } TDV[*vi].np=(*vi).P()+ Sum*(1.0/cnt); } if(OnlySelected) { for(vi=m.vert.begin();vi!=m.vert.end();++vi) if((*vi).IsS()) (*vi).P()=TDV[*vi].np; } else { for(vi=m.vert.begin();vi!=m.vert.end();++vi) (*vi).P()=TDV[*vi].np; } } template void PasoDobleSmooth(MeshType &m, int step, typename MeshType::ScalarType Sigma=0, int FitStep=10, typename MeshType::ScalarType FitLambda=0.05) { typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::CoordType CoordType; SimpleTempData< typename MeshType::VertContainer, PDVertInfo > TDV(m.vert); SimpleTempData< typename MeshType::FaceContainer, PDFaceInfo > TDF(m.face); PDVertInfo lpzv; lpzv.np=CoordType(0,0,0); PDFaceInfo lpzf; lpzf.m=CoordType(0,0,0); assert(m.HasVFTopology()); m.HasVFTopology(); TDV.Start(lpzv); TDF.Start(lpzf); for(int j=0;j::PerFace(m); NormalSmooth(m,TDF,Sigma); for(int k=0;k(m,TDV,TDF,FitLambda); } TDF.Stop(); TDV.Stop(); } // The sigma parameter affect the normal smoothing step template void PasoDobleSmoothFast(MeshType &m, int step, typename MeshType::ScalarType Sigma=0, int FitStep=50, bool SmoothSelected =false) { typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::CoordType CoordType; SimpleTempData< typename MeshType::VertContainer, PDVertInfo > TDV(m.vert); SimpleTempData< typename MeshType::FaceContainer, PDFaceInfo > TDF(m.face); PDVertInfo lpzv; lpzv.np=CoordType(0,0,0); PDFaceInfo lpzf; lpzf.m=CoordType(0,0,0); assert(m.HasVFTopology()); m.HasVFTopology(); TDV.Start(lpzv); TDF.Start(lpzf); for(int j=0;j(m,TDF,Sigma); for(int j=0;j(m,TDV,TDF,SmoothSelected); TDF.Stop(); TDV.Stop(); } } // End namespace vcg #endif // VCG_SMOOTH