/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.20 2008/04/04 10:27:34 cignoni minor changes to the topology correctness checks Revision 1.19 2007/05/29 00:07:06 ponchio VFi++ -> ++VFi Revision 1.18 2006/02/27 19:26:14 spinelli minor bug in Face-Face topology loop fixed Revision 1.17 2006/02/27 11:56:48 spinelli minor bug in Face-Face topology loop fixed Revision 1.16 2005/11/10 15:36:42 cignoni Added clarifying comment in an assert Revision 1.15 2004/10/20 07:33:10 cignoni removed FaceBorderFlags (already present in update/flags.h) Revision 1.14 2004/10/18 17:10:22 ganovelli added ::FaceBorderFLags Revision 1.13 2004/10/01 15:58:00 ponchio Added include Revision 1.12 2004/09/09 13:02:12 ponchio Linux compatible path in #include Revision 1.11 2004/08/07 16:18:20 pietroni addet testFFTopology and testVFTopology functions used to test the rispective topology.... Revision 1.10 2004/07/15 11:35:08 ganovelli Vfb to VFp Revision 1.9 2004/07/15 00:13:39 cignoni Better doxigen documentation Revision 1.8 2004/06/02 16:42:44 ganovelli typename for gcc compilation Revision 1.7 2004/06/02 16:28:22 ganovelli minor changes (swap =>> math::Swap) Revision 1.6 2004/05/10 15:23:43 cignoni Changed a FV -> VF in VertexFace topology computation Revision 1.5 2004/05/06 15:24:38 pietroni changed names to topology functions Revision 1.4 2004/03/31 14:44:43 cignoni Added Vertex-Face Topology Revision 1.3 2004/03/12 15:22:19 cignoni Written some documentation and added to the trimes doxygen module Revision 1.2 2004/03/05 21:49:21 cignoni First working version for face face Revision 1.1 2004/03/04 00:53:24 cignoni Initial commit ****************************************************************************/ #ifndef __VCG_TRI_UPDATE_TOPOLOGY #define __VCG_TRI_UPDATE_TOPOLOGY #include #include #include namespace vcg { namespace tri { /** \addtogroup trimesh */ /*@{*/ /** Generation of per-vertex and per-face topological information. **/ template class UpdateTopology { public: typedef UpdateMeshType MeshType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; /// Auxiliairy data structure for computing face face adjacency information. // It identifies and edge storing two vertex pointer and a face pointer where it belong. class PEdge { public: VertexPointer v[2]; // the two Vertex pointer are ordered! FacePointer f; // the face where this edge belong int z; // index in [0..2] of the edge of the face PEdge() {} void Set( FacePointer pf, const int nz ) { assert(pf!=0); assert(nz>=0); assert(nz<3); v[0] = pf->V(nz); v[1] = pf->V((nz+1)%3); assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes) if( v[0] > v[1] ) math::Swap(v[0],v[1]); f = pf; z = nz; } inline bool operator < ( const PEdge & pe ) const { if( v[0]pe.v[0] ) return false; else return v[1] < pe.v[1]; } inline bool operator <= ( const PEdge & pe ) const { if( v[0]pe.v[0] ) return false; else return v[1] <= pe.v[1]; } inline bool operator > ( const PEdge & pe ) const { if( v[0]>pe.v[0] ) return true; else if( v[0] pe.v[1]; } inline bool operator >= ( const PEdge & pe ) const { if( v[0]>pe.v[0] ) return true; else if( v[0]= pe.v[1]; } inline bool operator == ( const PEdge & pe ) const { return v[0]==pe.v[0] && v[1]==pe.v[1]; } inline bool operator != ( const PEdge & pe ) const { return v[0]!=pe.v[0] || v[1]!=pe.v[1]; } }; /** Update the Face-Face topological relation by allowing to retrieve for each face what other faces shares their edges. */ static void FaceFace(MeshType &m) { if(!m.HasFFTopology()) return; std::vector e; FaceIterator pf; typename std::vector::iterator p; if( m.fn == 0 ) return; e.resize(m.fn*3); // Alloco il vettore ausiliario p = e.begin(); for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce if( ! (*pf).IsD() ) for(int j=0;j<3;++j) { (*p).Set(&(*pf),j); ++p; } assert(p==e.end()); sort(e.begin(), e.end()); // Lo ordino per vertici int ne = 0; // Numero di edge reali typename std::vector::iterator pe,ps; ps = e.begin();pe=e.begin(); //for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario do { if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali { typename std::vector::iterator q,q_next; for (q=ps;q=0); assert((*q).z< 3); q_next = q; ++q_next; assert((*q_next).z>=0); assert((*q_next).z< 3); (*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce (*q).f->FFi(q->z) = (*q_next).z; } assert((*q).z>=0); assert((*q).z< 3); (*q).f->FFp((*q).z) = ps->f; (*q).f->FFi((*q).z) = ps->z; ps = pe; ++ne; // Aggiorno il numero di edge } if(pe==e.end()) break; ++pe; } while(true); } /** Update the Vertex-Face topological relation by allowing to retrieve for each vertex the list of faces sharing this vertex.. */ static void VertexFace(MeshType &m) { if(!m.HasVFTopology()) return; VertexIterator vi; FaceIterator fi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) { (*vi).VFp() = 0; (*vi).VFi() = 0; } for(fi=m.face.begin();fi!=m.face.end();++fi) if( ! (*fi).IsD() ) { for(int j=0;j<3;++j) { (*fi).VFp(j) = (*fi).V(j)->VFp(); (*fi).VFi(j) = (*fi).V(j)->VFi(); (*fi).V(j)->VFp() = &(*fi); (*fi).V(j)->VFi() = j; } } } /// Auxiliairy data structure for computing face face adjacency information. // It identifies and edge storing two vertex pointer and a face pointer where it belong. class PEdgeTex { public: typename FaceType::TexCoordType v[2]; // the two Vertex pointer are ordered! FacePointer f; // the face where this edge belong int z; // index in [0..2] of the edge of the face PEdgeTex() {} void Set( FacePointer pf, const int nz ) { assert(pf!=0); assert(nz>=0); assert(nz<3); v[0] = pf->WT(nz); v[1] = pf->WT((nz+1)%3); assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes) if( v[1] < v[0] ) swap(v[0],v[1]); f = pf; z = nz; } inline bool operator < ( const PEdgeTex & pe ) const { if( v[0] e; FaceIterator pf; typename std::vector::iterator p; if( m.fn == 0 ) return; e.resize(m.fn*3); // Alloco il vettore ausiliario p = e.begin(); for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce if( ! (*pf).IsD() ) for(int j=0;j<3;++j) { (*p).Set(&(*pf),j); ++p; } assert(p==e.end()); sort(e.begin(), e.end()); // Lo ordino per vertici int ne = 0; // Numero di edge reali typename std::vector::iterator pe,ps; ps = e.begin();pe=e.begin(); //for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario do { if( pe==e.end() || (*pe) != (*ps) ) // Trovo blocco di edge uguali { typename std::vector::iterator q,q_next; for (q=ps;q=0); assert((*q).z< 3); q_next = q; ++q_next; assert((*q_next).z>=0); assert((*q_next).z< 3); (*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce (*q).f->FFi(q->z) = (*q_next).z; } assert((*q).z>=0); assert((*q).z< 3); (*q).f->FFp((*q).z) = ps->f; (*q).f->FFi((*q).z) = ps->z; ps = pe; ++ne; // Aggiorno il numero di edge } if(pe==e.end()) break; ++pe; } while(true); } ///test correctness of VFtopology static void TestVertexFace(MeshType &m) { if(!m.HasVFTopology()) return; VertexIterator vi; vcg::face::VFIterator VFi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) { if (!vi->IsD()) if(vi->VFp()!=0) // unreferenced vertices MUST have VF == 0; { assert(vi->VFp() >= &*m.face.begin()); assert(vi->VFp() <= &m.face.back()); VFi.f=vi->VFp(); VFi.z=vi->VFi(); while (!VFi.End()) { assert(!VFi.F()->IsD()); assert((VFi.F()->V(VFi.I()))==&(*vi)); ++VFi; } } } } ///test correctness of FFtopology static void TestFaceFace(MeshType &m) { if(!m.HasFFTopology()) return; FaceIterator Fi; for(Fi=m.face.begin();Fi!=m.face.end();++Fi) { if (!Fi->IsD()) { for (int i=0;i<3;i++) { FaceType *f=Fi->FFp(i); int e=Fi->FFi(i); //invariant property of fftopology assert(f->FFp(e)=&(*Fi)); // Test that the two faces shares the same edge VertexPointer v0= Fi->V0(i); VertexPointer v1= Fi->V1(i); assert( (f->V0(e)==v0) || (f->V1(e)==v0) ); assert( (f->V0(e)==v1) || (f->V1(e)==v1) ); // Old unreadable test // assert(((f->V(e) == Fi->V(i))&&(f->V((e+1)%3)==Fi->V((i+1)%3)))|| // ((f->V(e)==Fi->V((i+1)%3))&&(f->V((e+1)%3)==Fi->V(i)))); } } } } }; // end class /*@}*/ } // End namespace } // End namespace #endif