//#include /** BIT-QUAD creation support: a collection of methods that, starting from a triangular mesh, will create your quad-pure or quad-domainant mesh. They all require: - per face Q, and FF connectivity, 2-manyfold meshes, - and tri- or quad- meshes (no penta, etc) (if in need, use MakeBitTriOnly) [ list of available methods: ] void MakePureByRefine(Mesh &m) - adds a vertex for each tri or quad present - thus, miminal complexity increase is the mesh is quad-dominant already - old non-border edges are made faux - never fails void MakePureByCatmullClark(MeshType &m) - adds a vertex in each (non-faux) edge. - twice complexity increase w.r.t. "ByRefine" method. - preserves edges: old edges are still edges - never fails bool MakePureByFlip(MeshType &m [, int maxdist] ) - does not increase # vertices, just flips edges - call in a loop until it returns true (temporary hack) - fails if number of triangle is odd (only happens in open meshes) - add "StepByStep" to method name if you want it to make a single step (debugging purposes) bool MakeTriEvenBySplit(MeshType& m) bool MakeTriEvenByDelete(MeshType& m) - two simple variants that either delete or split *at most one* border face so that the number of tris will be made even. Return true if it did it. - useful to use the previous method, when mesh is still all triangle void MakeDominant(MeshType &m, int level) - just merges traingle pairs into quads, trying its best - various heuristic available, see descr. for parameter "level" - provides good starting point for make-Quad-Only methods - uses an ad-hoc measure for "quad quality" (which is hard-wired, for now) void MakeBitTriOnly(MeshType &m) - inverse process: returns to tri-only mesh (more info in comments before each method) */ namespace vcg{namespace tri{ template class BitQuadCreation{ public: typedef _MeshType MeshType; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::CoordType CoordType; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FaceType* FaceTypeP; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::VertexIterator VertexIterator; typedef BitQuad BQ; // static class to make basic quad operations // helper function: // given a triangle, merge it with its best neightboord to form a quad template static void selectBestDiag(FaceType *fi){ if (!override) { if (fi->IsAnyF()) return; } // select which edge to make faux (if any)... int whichEdge = -1; ScalarType bestScore = fi->Q(); whichEdge=-1; for (int k=0; k<3; k++){ // todo: check creases? (continue if edge k is a crease) if (!override) { if (fi->FFp(k)->IsAnyF()) continue; } if (fi->FFp(k)==fi) continue; // never make a border faux ScalarType score = BQ::quadQuality( &*fi, k ); if (override) { // don't override anyway iff other face has a better match if (score < fi->FFp(k)->Q()) continue; } if (score>bestScore) { bestScore = score; whichEdge = k; } } // ...and make it faux if (whichEdge>=0) { //if (override && fi->FFp(whichEdge)->IsAnyF()) { // new score is the average of both scores // fi->Q() = fi->FFp(whichEdge)->Q() = ( bestScore + fi->FFp(whichEdge)->Q() ) /2; //} else { //} if (override) { // clear any faux edge of the other face for (int k=0; k<3; k++) if (fi->FFp(whichEdge)->IsF(k)) { fi->FFp(whichEdge)->ClearF(k); fi->FFp(whichEdge)->FFp(k)->ClearF( fi->FFp(whichEdge)->FFi(k) ); fi->FFp(whichEdge)->FFp(k)->Q()=0.0; // other face's ex-buddy is now single and sad :( } // clear all faux edges of this face... for (int k=0; k<3; k++) if (fi->IsF(k)) { fi->ClearF(k); fi->FFp(k)->ClearF( fi->FFi(k) ); fi->FFp(k)->Q()= 0.0; // my ex-buddy is now sad } } // set (new?) quad fi->SetF(whichEdge); fi->FFp(whichEdge)->SetF( fi->FFi(whichEdge) ); fi->Q() = fi->FFp(whichEdge)->Q() = bestScore; } } // helper funcion: // a pass though all triangles to merge triangle pairs into quads template // override previous decisions? static void MakeDominantPass(MeshType &m){ for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) { selectBestDiag(&(*fi)); } } // make tri count even by splitting a single triangle... static bool MakeTriEvenBySplit(MeshType& m){ if (m.fn%2==0) return false; // it's already Even assert(0); // todo! } // make tri count even by delete... static bool MakeTriEvenByDelete(MeshType& m) { if (m.fn%2==0) return false; // it's already Even for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) { for (int k=0; k<3; k++) { if (fi->FFp(k) == &* fi) { // mark the two old neight as border and not faux for (int h=1; h<3; h++) { int kh=(k+h)%3; int j = fi->FFi( kh ); FaceType *f = fi->FFp(kh); if (f != &* fi) { f->FFp( j ) = f; f->FFi( j ) = j; f->ClearF(j); } } // delete found face Allocator::DeleteFace(m,*fi); return true; } } } assert(0); // no border face found? then how could the number of tri be Odd? return true; } /** Given a mesh, makes it bit trianglular (makes all edges NOT faux) */ static void MakeBitTriOnly(MeshType &m){ for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) { fi->ClearAllF(); } } /** given a quad-and-tree mesh, enforces the "faux edge is 2nd edge" convention. * Requires (and updates): FV and FF structure * Updates: faux flags * Updates: per wedge attributes, if any * Other connectivity structures, and per edge and per wedge flags are ignored */ static bool MakeBitTriQuadConventional(MeshType &m){ assert(0); // todo } /* returns true if mesh is a "conventional" quad mesh. I.e. if it is all quads, with third edge faux fora all triangles*/ static bool IsBitTriQuadConventional(MeshType &m){ for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) { if (fi->IsAnyF()) if ( fi->Flags() & ( FaceType::FAUX012 ) != FaceType::FAUX2 ) { return false; } } return true; } /** makes any mesh quad only by refining it so that a quad is created over all previous diags requires that the mesh is made only of quads and tris. */ static void MakePureByRefine(MeshType &m){ // todo: update VF connectivity if present int ev = 0; // EXTRA vertices (times 2) int ef = 0; // EXTRA faces // first pass: count triangles to be added for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) { int k=0; // number of borders if (fi->FFp(0) == &*fi) k++; if (fi->FFp(1) == &*fi) k++; if (fi->FFp(2) == &*fi) k++; if (!fi->IsAnyF()) { // it's a triangle if (k==0) // add a vertex in the center of the face, splitting it in 3 { ev+=2; ef+=2; } if (k==1) // add a vertex in the border edge, splitting it in 2 { } if (k==2) // do nothing, just mark the non border edge as faux { } if (k==3) // disconnected single triangle (all borders): make one edge as faus { } } else { // assuming is a quad (not a penta, etc), i.e. only one faux // add a vertex in the center of the faux edge, splitting the face in 2 ev+=1; ef+=1; assert(k!=3); } } assert(ev%2==0); // should be even by now ev/=2; // I was counting each of them twice int originalFaceNum = m.fn; FaceIterator nfi = tri::Allocator::AddFaces(m,ef); VertexIterator nvi = tri::Allocator::AddVertices(m,ev); for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) fi->ClearV(); // second pass: add faces and vertices int nsplit=0; // spits to be done on border in the third pass for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD() && !fi->IsV() ) { fi->SetV(); if (!fi->IsAnyF()) { // it's a triangle int k=0; // number of borders if (fi->FFp(0) == &*fi) k++; if (fi->FFp(1) == &*fi) k++; if (fi->FFp(2) == &*fi) k++; if (k==0) // add a vertex in the center of the face, splitting it in 3 { assert(nvi!=m.vert.end()); VertexType *nv = &*nvi; nvi++; *nv = *fi->V0( 0 ); // lazy: copy everything from the old vertex nv->P() = ( fi->V(0)->P() + fi->V(1)->P() + fi->V(2)->P() ) /3.0; FaceType *fa = &*fi; FaceType *fb = &*nfi; nfi++; FaceType *fc = &*nfi; nfi++; *fb = *fc = *fa; // lazy: copy everything from the old faces fa->V(0) = nv; fb->V(1) = nv; fc->V(2) = nv; assert( fa->FFp(1)->FFp(fa->FFi(1)) == fa ); /* */fb->FFp(2)->FFp(fb->FFi(2)) = fb; /* */fc->FFp(0)->FFp(fc->FFi(0)) = fc; fa->FFp(0) = fc; fa->FFp(2) = fb; fa->FFi(0) = fa->FFi(2) = 1; fb->FFp(1) = fa; fb->FFp(0) = fc; fb->FFi(0) = fb->FFi(1) = 2; fc->FFp(1) = fa; fc->FFp(2) = fb; fc->FFi(1) = fc->FFi(2) = 0; if (fb->FFp(2)==fa) fb->FFp(2)=fb; // recover border status if (fc->FFp(0)==fa) fc->FFp(0)=fc; fa->ClearAllF(); fb->ClearAllF(); fc->ClearAllF(); fa->SetF(1); fb->SetF(2); fc->SetF(0); fa->SetV();fb->SetV();fc->SetV(); } if (k==1) { // make a border face faux, anf other two as well fi->SetF(0); fi->SetF(1); fi->SetF(2); nsplit++; } if (k==2) // do nothing, just mark the non border edge as faux { fi->ClearAllF(); for (int w=0; w<3; w++) if (fi->FFp(w) != &*fi) fi->SetF(w); } if (k==3) // disconnected single triangle (all borders): use catmull-clark (tree vertices, split it in 6 { fi->ClearAllF(); fi->SetF(2); nsplit++; } } else { // assuming is a part of quad (not a penta, etc), i.e. only one faux FaceType *fa = &*fi; int ea2 = BQ::FauxIndex(fa); // index of the only faux edge FaceType *fb = fa->FFp(ea2); int eb2 = fa->FFi(ea2); assert(fb->FFp(eb2)==fa) ; assert(fa->IsF(ea2)); //assert(fb->IsF(eb2)); // reciprocal faux edge int ea0 = (ea2+1) %3; int ea1 = (ea2+2) %3; int eb0 = (eb2+1) %3; int eb1 = (eb2+2) %3; // create new vert in center of faux edge assert(nvi!=m.vert.end()); VertexType *nv = &*nvi; nvi++; *nv = * fa->V0( ea2 ); nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0; // split faces: add 2 faces (one per side) assert(nfi!=m.face.end()); FaceType *fc = &*nfi; nfi++; assert(nfi!=m.face.end()); FaceType *fd = &*nfi; nfi++; *fc = *fa; *fd = *fb; fa->V(ea2) = fc->V(ea0) = fb->V(eb2) = fd->V(eb0) = nv ; fa->FFp(ea1)->FFp( fa->FFi(ea1) ) = fc; fb->FFp(eb1)->FFp( fb->FFi(eb1) ) = fd; fa->FFp(ea1) = fc ; fa->FFp(ea2) = fd; fa->FFi(ea1) = ea0; fa->FFi(ea2) = eb2; fb->FFp(eb1) = fd ; fb->FFp(eb2) = fc; fb->FFi(eb1) = eb0; fb->FFi(eb2) = ea2; fc->FFp(ea0) = fa ; fc->FFp(ea2) = fb; fc->FFi(ea0) = ea1; fc->FFi(ea2) = eb2; fd->FFp(eb0) = fb ; fd->FFp(eb2) = fa; fd->FFi(eb0) = eb1; fd->FFi(eb2) = ea2; // detect boundaries bool ba = fa->FFp(ea0)==fa; bool bc = fc->FFp(ea1)==fa; bool bb = fb->FFp(eb0)==fb; bool bd = fd->FFp(eb1)==fb; if (bc) fc->FFp(ea1)=fc; // repristinate boundary status if (bd) fd->FFp(eb1)=fd; // of new faces fa->SetV(); fb->SetV(); fc->SetV(); fd->SetV(); fa->ClearAllF(); fb->ClearAllF(); fc->ClearAllF(); fd->ClearAllF(); fa->SetF( ea0 ); fb->SetF( eb0 ); fc->SetF( ea1 ); fd->SetF( eb1 ); // fix faux mesh boundary... if two any consecutive, merge it in a quad if (ba&&bc) { fa->ClearAllF(); fa->SetF(ea1); fc->ClearAllF(); fc->SetF(ea0); ba = bc = false; } if (bc&&bb) { fc->ClearAllF(); fc->SetF(ea2); fb->ClearAllF(); fb->SetF(eb2); bc = bb = false; } if (bb&&bd) { fb->ClearAllF(); fb->SetF(eb1); fd->ClearAllF(); fd->SetF(eb0); bb = bd = false; } if (bd&&ba) { fd->ClearAllF(); fd->SetF(eb2); fa->ClearAllF(); fa->SetF(ea2); bd = ba = false; } // remaninig boudaries will be fixed by splitting in the last pass if (ba) nsplit++; if (bb) nsplit++; if (bc) nsplit++; if (bd) nsplit++; } } assert(nfi==m.face.end()); assert(nvi==m.vert.end()); // now and there are no tris left, but there can be faces with ONE edge border & faux () // last pass: add vertex on faux border faces... (if any) if (nsplit>0) { FaceIterator nfi = tri::Allocator::AddFaces(m,nsplit); VertexIterator nvi = tri::Allocator::AddVertices(m,nsplit); for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) { FaceType* fa = &*fi; int ea2 = -1; // border and faux face (if any) if (fa->FFp(0)==fa && fa->IsF(0) ) ea2=0; if (fa->FFp(1)==fa && fa->IsF(1) ) ea2=1; if (fa->FFp(2)==fa && fa->IsF(2) ) ea2=2; if (ea2 != -1) { // ea2 edge is naughty (border AND faux) int ea0 = (ea2+1) %3; int ea1 = (ea2+2) %3; // create new vert in center of faux edge VertexType *nv = &*nvi; nvi++; *nv = * fa->V0( ea2 ); nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0; // split face: add 1 face FaceType *fc = &*nfi; nfi++; *fc = *fa; fa->V(ea2) = fc->V(ea0) = nv ; fc->FFp(ea2) = fc; fa->FFp(ea1)->FFp( fa->FFi(ea1) ) = fc; fa->FFp(ea1) = fc ; fa->FFi(ea1) = ea0; fc->FFp(ea0) = fa ; fc->FFp(ea2) = fc; fc->FFi(ea0) = ea1; if (fc->FFp(ea1)==fa) fc->FFp(ea1)=fc; // recover border status assert(fa->IsF(ea0) == fa->IsF(ea1) ); bool b = fa->IsF(ea1); fa->ClearAllF(); fc->ClearAllF(); if (b) { fa->SetF( ea0 ); fc->SetF( ea1 ); } else { fa->SetF( ea1 ); fc->SetF( ea0 ); } } } } } // uses Catmull Clark to enforce quad only meshes // each old edge (but not faux) is split in two. static void MakePureByCatmullClark(MeshType &m){ MakePureByRefine(m); MakePureByRefine(m); // et-voilą!!! } // Helper funcion: // marks edge distance froma a given face. // Stops at maxDist or at the distance when a triangle is found static FaceType * MarkEdgeDistance(MeshType &m, FaceType *f, int maxDist){ assert(MeshType::HasPerFaceQuality()); for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!f->IsD()) { fi->Q()=maxDist; } FaceType * firstTriangleFound = NULL; f->Q() = 0; std::vector stack; int stackPos=0; stack.push_back(f); while ( stackPosFFp(k); int fq = int(f->Q()) + ( ! f->IsF(k) ); if (fk->Q()> fq && fq <= maxDist) { if (!fk->IsAnyF()) { firstTriangleFound = fk; maxDist = fq;} fk->Q() = fq; stack.push_back(fk); } } } return firstTriangleFound; } /* given a tri-quad mesh, uses edge rotates to make a tri move toward another tri and to merges them into a quad. Retunrs number of surviving triangles (0, or 1), or -1 if not done yet. StepbyStep: makes just one step! use it in a loop as long as it returns 0 or 1. maxdist is the maximal edge distance where to look for a companion triangle */ static int MakePureByFlipStepByStep(MeshType &m, int maxdist=10000, int restart=false){ static FaceType *ta, *tb; // faces to be matched into a quad static int step = 0; // hack if (restart) { step=0; return false; } if (step==0) { // find a triangular face ta ta = NULL; for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) { if (!fi->IsAnyF()) { ta=&*fi; break; } } if (!ta) return 0; // success: no triangle left (done?) tb = MarkEdgeDistance(m,ta,maxdist); if (!tb) return 1; // fail: no matching triagle found (increase maxdist?) step=1; } else { int marriageEdge=-1; bool done = false; while (!done) { int bestScore = int(tb->Q()); int edge = -1; bool mustDoFlip; // select which edge to use for (int k=0; k<3; k++) { if (tb->FFp(k) == tb) continue; // border FaceType* tbk = tb->FFp(k); if (!tbk->IsAnyF()) {done=true; marriageEdge=k; break; } // found my match int back = tb->FFi(k); int faux = BQ::FauxIndex(tbk); int other = 3-back-faux; int scoreA = int(tbk->FFp(other)->Q()); FaceType* tbh = tbk->FFp(faux); int fauxh = BQ::FauxIndex(tbh); int scoreB = int(tbh->FFp( (fauxh+1)%3 )->Q()); int scoreC = int(tbh->FFp( (fauxh+2)%3 )->Q()); int scoreABC = std::min( scoreC, std::min( scoreA, scoreB ) ); if (scoreABCFFp(edge)) ); } FaceType* next = tb->FFp(edge)->FFp( BQ::FauxIndex(tb->FFp(edge)) ); // create new edge next->ClearAllF(); tb->FFp(edge)->ClearAllF(); // dissolve old edge tb->SetF(edge); tb->FFp(edge)->SetF( tb->FFi(edge) ); tb->FFp(edge)->Q() = tb->Q(); tb = next; break; } if (marriageEdge!=-1) { // consume the marriage (two tris = one quad) assert(!(tb->IsAnyF())); assert(!(tb->FFp(marriageEdge)->IsAnyF())); tb->SetF(marriageEdge); tb->FFp(marriageEdge)->SetF(tb->FFi(marriageEdge)); step=0; } } return -1; // not done yet } /* given a tri-quad mesh, uses edge rotates to make a tri move toward another tri and to merges them into a quad. - maxdist is the maximal edge distance where to look for a companion triangle - retunrs true if all triangles are merged (always, unless they are odd, or maxdist not enough). */ static bool MakePureByFlip(MeshType &m, int maxdist=10000) { MakePureByFlipStepByStep(m, maxdist, true); // restart int res=-1; while (res==-1) res = MakePureByFlipStepByStep(m, maxdist); return res==0; } /** given a triangle mesh, makes it quad dominant by merging triangle pairs into quads various euristics: level = 0: maximally greedy. Leaves fewest triangles level = 1: smarter: leaves more triangles, but makes better quality quads level = 2: even more so (marginally) */ static void MakeDominant(MeshType &m, int level){ assert(MeshType::HasPerFaceQuality()); assert(MeshType::HasPerFaceFlags()); for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) { fi->ClearAllF(); fi->Q() = 0; } MakeDominantPass (m); if (level>0) MakeDominantPass (m); if (level>1) MakeDominantPass (m); if (level>0) MakeDominantPass (m); } }; }} // end namespace vcg::tri