/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.8 2006/06/01 08:38:58 pietroni added PointDistance function Revision 1.7 2006/03/01 15:35:09 pietroni compiled InterspolationParameters function Revision 1.6 2006/01/22 10:00:56 cignoni Very Important Change: Area->DoubleArea (and no more Area function) Revision 1.5 2005/09/23 14:18:27 ganovelli added constructor Revision 1.4 2005/04/14 11:35:09 ponchio *** empty log message *** Revision 1.3 2004/07/15 13:22:37 cignoni Added the standard P() access function instead of the shortcut P0() Revision 1.2 2004/07/15 10:17:42 pietroni correct access to point funtions call in usage of triangle3 (ex. t.P(0) in t.P0(0)) Revision 1.1 2004/03/08 01:13:31 cignoni Initial commit ****************************************************************************/ #ifndef __VCG_TRIANGLE3 #define __VCG_TRIANGLE3 #include #include #include namespace vcg { /** \addtogroup space */ /*@{*/ /** Templated class for storing a generic triangle in a 3D space. Note the relation with the Face class of TriMesh complex, both classes provide the P(i) access functions to their points and therefore they share the algorithms on it (e.g. area, normal etc...) */ template class Triangle3 { public: typedef ScalarTriangleType ScalarType; typedef Point3< ScalarType > CoordType; /// The bounding box type typedef Box3 BoxType; /********************************************* blah blah **/ Triangle3(const CoordType & c0,const CoordType & c1,const CoordType & c2){_v[0]=c0;_v[1]=c1;_v[2]=c2;} protected: /// Vector of vertex pointer incident in the face Point3 _v[3]; public: /// Shortcut per accedere ai punti delle facce inline CoordType & P( const int j ) { return _v[j];} inline CoordType & P0( const int j ) { return _v[j];} inline CoordType & P1( const int j ) { return _v[(j+1)%3];} inline CoordType & P2( const int j ) { return _v[(j+2)%3];} inline const CoordType & P( const int j ) const { return _v[j];} inline const CoordType & P0( const int j ) const { return _v[j];} inline const CoordType & P1( const int j ) const { return _v[(j+1)%3];} inline const CoordType & P2( const int j ) const { return _v[(j+2)%3];} inline const CoordType & cP0( const int j ) const { return _v[j];} inline const CoordType & cP1( const int j ) const { return _v[(j+1)%3];} inline const CoordType & cP2( const int j ) const { return _v[(j+2)%3];} /** Calcola i coefficienti della combinazione convessa. @param bq Punto appartenente alla faccia @param a Valore di ritorno per il vertice V(0) @param b Valore di ritorno per il vertice V(1) @param _c Valore di ritorno per il vertice V(2) @return true se bq appartiene alla faccia, false altrimenti */ bool InterpolationParameters(const CoordType & bq, ScalarType &a, ScalarType &b, ScalarType &_c ) const { const ScalarType EPSILON = ScalarType(0.000001); #define x1 (P(0).X()) #define y1 (P(0).Y()) #define z1 (P(0).Z()) #define x2 (P(1).X()) #define y2 (P(1).Y()) #define z2 (P(1).Z()) #define x3 (P(2).X()) #define y3 (P(2).Y()) #define z3 (P(2).Z()) #define px (bq[0]) #define py (bq[1]) #define pz (bq[2]) ScalarType t1 = px*y2; ScalarType t2 = px*y3; ScalarType t3 = py*x2; ScalarType t4 = py*x3; ScalarType t5 = x2*y3; ScalarType t6 = x3*y2; ScalarType t8 = x1*y2; ScalarType t9 = x1*y3; ScalarType t10 = y1*x2; ScalarType t11 = y1*x3; ScalarType t13 = t8-t9-t10+t11+t5-t6; if(fabs(t13)>=EPSILON) { ScalarType t15 = px*y1; ScalarType t16 = py*x1; a = (t1 -t2-t3 +t4+t5-t6 )/t13; b = -(t15-t2-t16+t4+t9-t11)/t13; _c = (t15-t1-t16+t3+t8-t10)/t13; return true; } t1 = px*z2; t2 = px*z3; t3 = pz*x2; t4 = pz*x3; t5 = x2*z3; t6 = x3*z2; t8 = x1*z2; t9 = x1*z3; t10 = z1*x2; t11 = z1*x3; t13 = t8-t9-t10+t11+t5-t6; if(fabs(t13)>=EPSILON) { ScalarType t15 = px*z1; ScalarType t16 = pz*x1; a = (t1 -t2-t3 +t4+t5-t6 )/t13; b = -(t15-t2-t16+t4+t9-t11)/t13; _c = (t15-t1-t16+t3+t8-t10)/t13; return true; } t1 = pz*y2; t2 = pz*y3; t3 = py*z2; t4 = py*z3; t5 = z2*y3; t6 = z3*y2; t8 = z1*y2; t9 = z1*y3; t10 = y1*z2; t11 = y1*z3; t13 = t8-t9-t10+t11+t5-t6; if(fabs(t13)>=EPSILON) { ScalarType t15 = pz*y1; ScalarType t16 = py*z1; a = (t1 -t2-t3 +t4+t5-t6 )/t13; b = -(t15-t2-t16+t4+t9-t11)/t13; _c = (t15-t1-t16+t3+t8-t10)/t13; return true; } #undef x1 #undef y1 #undef z1 #undef x2 #undef y2 #undef z2 #undef x3 #undef y3 #undef z3 #undef px #undef py #undef pz return false; } /// Return the _q of the face, the return value is in [0,sqrt(3)/2] = [0 - 0.866.. ] ScalarType QualityFace( ) const { return Quality(P(0), P(1), P(2)); /* CoordType d10 = P(1) - P(0); CoordType d20 = P(2) - P(0); CoordType d12 = P(1) - P(2); CoordType x = d10^d20; ScalarType a = Norm( x ); // doppio dell' Area ScalarType b; b = Norm2( d10 ); ScalarType t = b; t = Norm2( d20 ); if( b P3ScalarType Quality( Point3 const &p0, Point3 const & p1, Point3 const & p2) { Point3 d10=p1-p0; Point3 d20=p2-p0; Point3 d12=p1-p2; Point3 x = d10^d20; P3ScalarType a = Norm( x ); if(a==0) return 0; // Area zero triangles have surely quality==0; P3ScalarType b = SquaredNorm( d10 ); P3ScalarType t = b; t = SquaredNorm( d20 ); if ( b Point3 Normal(const TriangleType &t) { return (( t.P(1) - t.P(0)) ^ (t.P(2) - t.P(0))); } /// Like the above, it returns the normal to the plane passing through p0,p1,p2, but normalized. template Point3 NormalizedNormal(const TriangleType &t) { return (( t.P(1) - t.P(0)) ^ (t.P(2) - t.P(0))).Normalize(); } /// Return the Double of area of the triangle // NOTE the old Area function has been removed to intentionally // cause compiling error that will help people to check their code... // A some people used Area assuming that it returns the double and some not. // So please check your codes!!! // And please DO NOT Insert any Area named function here! template typename TriangleType::ScalarType DoubleArea(const TriangleType &t) { return Norm( (t.P(1) - t.P(0)) ^ (t.P(2) - t.P(0)) ); } template Point3 Barycenter(const TriangleType &t) { return ((t.cP(0)+t.cP(1)+t.cP(2))/(typename TriangleType::ScalarType) 3.0); } template typename TriangleType::ScalarType Perimeter(const TriangleType &t) { return Distance(t.P(0),t.P(1))+ Distance(t.P(1),t.P(2))+ Distance(t.P(2),t.P(0)); } template void PointDistance(const TriangleType &t, typename TriangleType::CoordType & q, typename TriangleType::ScalarType & dist, typename TriangleType::CoordType & p ) { typedef typename TriangleType::CoordType CoordType; typedef typename TriangleType::ScalarType ScalarType; CoordType clos[4]; ScalarType distv[4]; ///find distance on the plane vcg::Plane3 plane; plane.Init(t.P(0),t.P(1),t.P(2)); clos[0]=plane.Projection(q); distv[0]=(clos[0]-p).Norm(); //distance from the edges vcg::Segment3 e0=vcg::Segment3(t.P(0),t.P(1)); vcg::Segment3 e1=vcg::Segment3(t.P(1),t.P(2)); vcg::Segment3 e2=vcg::Segment3(t.P(2),t.P(0)); clos[1]=ClosestPoint( e0, q); clos[2]=ClosestPoint( e1, q); clos[3]=ClosestPoint( e2, q); distv[1]=(clos[1]-p).Norm(); distv[2]=(clos[2]-p).Norm(); distv[3]=(clos[3]-p).Norm(); int min=0; ///find minimum distance for (int i=1;i<4;i++) { if (distv[i]