/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_MESH #error "This file should not be included alone. It is automatically included by complex.h" #endif #ifndef __VCG_EDGE_PLUS_COMPONENT #define __VCG_EDGE_PLUS_COMPONENT namespace vcg { namespace edge { /** \addtogroup EdgeComponentGroup @{ */ /* Some naming Rules All the Components that can be added to a vertex should be defined in the namespace edge: */ /*------------------------- EMPTY CORE COMPONENTS -----------------------------------------*/ template class EmptyCore: public T { public: inline typename T::VertexType * & V( const int j ) { (void)j; assert(0); static typename T::VertexType *vp=0; return vp; } inline typename T::VertexType * const & V( const int j ) const { (void)j; assert(0); static typename T::VertexType *vp=0; return vp; } inline typename T::VertexType * cV( const int j ) const { (void)j; assert(0); static typename T::VertexType *vp=0; return vp; } inline typename T::CoordType & P( const int j ) { (void)j; assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } inline const typename T::CoordType & P( const int j ) const { (void)j; assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } inline const typename T::CoordType & cP( const int j ) const { (void)j; assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } static bool HasEVAdjacency() { return false; } static bool HasVertexRef() { return false; } typedef vcg::Color4b ColorType; ColorType &C() { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } ColorType cC() const { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } static bool HasColor() { return false; } typedef float QualityType; QualityType &Q() { static QualityType dummyQuality(0); assert(0); return dummyQuality; } QualityType cQ() const { static QualityType dummyQuality(0); assert(0); return dummyQuality; } static bool HasQuality() { return false; } typedef int MarkType; inline void InitIMark() { } inline int cIMark() const { assert(0); static int tmp=-1; return tmp;} inline int &IMark() { assert(0); static int tmp=-1; return tmp;} static bool HasMark() { return false; } typedef int FlagType; int &Flags() { static int dummyflags(0); assert(0); return dummyflags; } int Flags() const { return 0; } static bool HasFlags() { return false; } typename T::EdgePointer &VEp(const int & ) { static typename T::EdgePointer ep=0; assert(0); return ep; } typename T::EdgePointer cVEp(const int & ) const { static typename T::EdgePointer ep=0; assert(0); return ep; } int &VEi(const int &){static int z=0; assert(0); return z;} int cVEi(const int &) const {static int z=0; assert(0); return z;} static bool HasVEAdjacency() { return false; } typename T::EdgePointer &EEp(const int & ) { static typename T::EdgePointer ep=0; assert(0); return ep; } typename T::EdgePointer cEEp(const int & ) const { static typename T::EdgePointer ep=0; assert(0); return ep; } int &EEi(const int &){static int z=0; assert(0); return z;} int cEEi(const int &) const {static int z=0; assert(0); return z;} static bool HasEEAdjacency() { return false; } typename T::HEdgePointer &EHp( ) { static typename T::HEdgePointer hp=0; assert(0); return hp; } typename T::HEdgePointer cEHp( ) const { static typename T::HEdgePointer hp=0; assert(0); return hp; } static bool HasEHAdjacency() { return false; } typename T::FacePointer &EFp() { static typename T::FacePointer fp=0; assert(0); return fp; } typename T::FacePointer cEFp() const { static typename T::FacePointer fp=0; assert(0); return fp; } int &EFi() {static int z=0; return z;} int &cEFi() const {static int z=0; return z;} static bool HasEFAdjacency() { return false; } template void ImportData(const LeftF & leftF) {T::ImportData(leftF);} static void Name(std::vector & name){T::Name(name);} }; /*-------------------------- VertexRef ----------------------------------------*/ /*! \brief The references to the two vertexes of a edge * * Stored as pointers to the VertexType */ template class VertexRef: public T { public: VertexRef(){ v[0]=0; v[1]=0; } inline typename T::VertexType * & V( const int j ) { assert(j>=0 && j<2); return v[j]; } inline typename T::VertexType * const & V( const int j ) const { assert(j>=0 && j<2); return v[j]; } inline typename T::VertexType * cV( const int j ) const { assert(j>=0 && j<2); return v[j]; } // Shortcut per accedere ai punti delle facce inline typename T::CoordType & P( const int j ) { assert(j>=0 && j<2); return v[j]->P(); } inline const typename T::CoordType &cP( const int j ) const { assert(j>=0 && j<2); return v[j]->cP(); } /** Return the pointer to the ((j+1)%3)-th vertex of the face. @param j Index of the face vertex. */ inline typename T::VertexType * & V0( const int j ) { return V(j);} inline typename T::VertexType * & V1( const int j ) { return V((j+1)%2);} inline const typename T::VertexType * const & V0( const int j ) const { return V(j);} inline const typename T::VertexType * const & V1( const int j ) const { return V((j+1)%2);} inline const typename T::VertexType * const & cV0( const int j ) const { return cV(j);} inline const typename T::VertexType * const & cV1( const int j ) const { return cV((j+1)%2);} /// Shortcut per accedere ai punti delle facce inline typename T::CoordType & P0( const int j ) { return V(j)->P();} inline typename T::CoordType & P1( const int j ) { return V((j+1)%2)->P();} inline const typename T::CoordType & P0( const int j ) const { return V(j)->P();} inline const typename T::CoordType & P1( const int j ) const { return V((j+1)%2)->P();} inline const typename T::CoordType & cP0( const int j ) const { return cV(j)->P();} inline const typename T::CoordType & cP1( const int j ) const { return cV((j+1)%2)->P();} template void ImportData(const LeftF & leftF){ T::ImportData(leftF);} static bool HasEVAdjacency() { return true; } static bool HasVertexRef() { return true; } static void Name(std::vector & name){name.push_back(std::string("VertexRef"));T::Name(name);} private: typename T::VertexType *v[2]; }; template class EVAdj : public VertexRef{}; /*-------------------------- INCREMENTAL MARK ----------------------------------------*/ /*! \brief \em Component: Per edge \b Incremental \b Mark * * An int that allows to efficently un-mark the whole mesh. \sa UnmarkAll */ template class Mark: public T { public: Mark():_imark(0){} static bool HasMark() { return true; } static bool HasMarkOcc() { return true; } inline void InitIMark() { _imark = 0; } inline int & IMark() { return _imark;} inline const int & IMark() const {return _imark;} template < class LeftV> void ImportData(const LeftV & left ) { IMark() = left.IMark(); T::ImportData( left); } static void Name(std::vector & name){name.push_back(std::string("Mark"));T::Name(name);} private: int _imark; }; /*------------------------- FLAGS -----------------------------------------*/ /*! \brief \em Component: Per edge \b Flags * * This component stores a 32 bit array of bit flags. These bit flags are used for keeping track of selection, deletion, visiting etc. \sa \ref flags for more details on common uses of flags. */ template class BitFlags: public T { public: BitFlags(){_flags=0;} typedef int FlagType; int &Flags() {return _flags; } int Flags() const {return _flags; } template < class LeftV> void ImportData(const LeftV & left ) { Flags() = left.Flags(); T::ImportData( left); } static bool HasFlags() { return true; } static void Name(std::vector & name){name.push_back(std::string("BitFlags"));T::Name(name);} private: int _flags; }; /*-------------------------- Color ----------------------------------*/ /*! \brief \em Component: Per edge \b Color * * Usually most of the library expects a color stored as 4 unsigned chars (so the component you use is a \c vertex::Color4b) * but you can also use float for the color components. */ template class Color: public T { public: Color():_color(vcg::Color4b::White) {} typedef A ColorType; ColorType &C() { return _color; } const ColorType &C() const { return _color; } const ColorType &cC() const { return _color; } template < class LeftV> void ImportData(const LeftV & left ) { C() = left.cC(); T::ImportData( left); } static bool HasColor() { return true; } static void Name(std::vector & name){name.push_back(std::string("Color"));T::Name(name);} private: ColorType _color; }; template class Color4b: public edge::Color { public: static void Name(std::vector & name){name.push_back(std::string("Color4b"));TT::Name(name);} }; /*-------------------------- Quality ----------------------------------*/ /*! \brief \em Component: Per edge \b quality * * The Quality Component is a generic place for storing a float. The term 'quality' is a bit misleading and it is due to its original storic meaning. You should intend it as a general purpose container. * \sa vcg::tri::UpdateColor for methods transforming quality into colors * \sa vcg::tri::UpdateQuality for methods to manage it */ template class Quality: public TT { public: typedef A QualityType; QualityType &Q() { return _quality; } const QualityType & cQ() const {return _quality; } template < class LeftV> void ImportData(const LeftV & left ) { Q() = left.cQ(); TT::ImportData( left); } static bool HasQuality() { return true; } static void Name(std::vector & name){name.push_back(std::string("Quality"));TT::Name(name);} private: QualityType _quality; }; template class Qualitys: public Quality { public: static void Name(std::vector & name){name.push_back(std::string("Qualitys"));TT::Name(name);} }; template class Qualityf: public Quality { public: static void Name(std::vector & name){name.push_back(std::string("Qualityf"));TT::Name(name);} }; template class Qualityd: public Quality { public: static void Name(std::vector & name){name.push_back(std::string("Qualityd"));TT::Name(name);} }; /*----------------------------- VEADJ ------------------------------*/ /*! \brief \em Component: Per vertex \b Vertex-Edge adjacency relation companion component This component implement one element of the list of edges incident on a vertex. You must use this component only toghether with the corresponding \ref vcg::vertex::VEAdj component in the vertex type \sa vcg::tri::UpdateTopology for functions that compute this relation \sa iterators */ template class VEAdj: public T { public: VEAdj(){_ep[0]=0;_ep[1]=0;_zp[0]=-1;_zp[1]=-1;} typename T::EdgePointer &VEp(const int & i) {return _ep[i]; } typename T::EdgePointer cVEp(const int & i) const {return _ep[i]; } int &VEi(const int & i){ return _zp[i];} int cVEi(const int &i )const {return _zp[i];} template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static bool HasVEAdjacency() { return true; } static bool HasVEAdjacencyOcc() { return true; } static void Name(std::vector & name){name.push_back(std::string("VEAdj"));T::Name(name);} private: typename T::EdgePointer _ep[2] ; int _zp[2] ; }; /*----------------------------- EEADJ ------------------------------*/ /*! \brief \em Component: \b Edge-Edge adjacency relation This component implement store the pointer (and index) of the adjacent edges. If the vertex is 1-manifold (as in a classical polyline) it holds that: \code e->EEp(i)->EEp(e->EEi(i)) == e \endcode otherwise the edges are connected in a unordered chain (quite similar to how Face-Face adjacency relation is stored); \sa vcg::tri::UpdateTopology for functions that compute this relation \sa iterators */ template class EEAdj: public T { public: EEAdj(){_ep[0]=0;_ep[1]=0;_zp[0]=-1;_zp[1]=-1;} typename T::EdgePointer &EEp(const int & i) {return _ep[i]; } typename T::EdgePointer cEEp(const int & i) const {return _ep[i]; } int &EEi(const int & i){ return _zp[i];} int cEEi(const int &i )const {return _zp[i];} template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static bool HasEEAdjacency() { return true; } static bool HasEEAdjacencyOcc() { return true; } static void Name(std::vector & name){name.push_back(std::string("EEAdj"));T::Name(name);} private: typename T::EdgePointer _ep[2] ; int _zp[2] ; }; /*----------------------------- EHADJ ------------------------------*/ template class EHAdj: public T { public: EHAdj(){_hp=0;} typename T::HEdgePointer &EHp( ) {return _hp ; } const typename T::HEdgePointer cEHp( ) const {return _hp ; } template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static bool HasEHAdjacency() { return true; } static bool HasEHAdjacencyOcc() { return true; } static void Name(std::vector & name){name.push_back(std::string("EHAdj"));T::Name(name);} private: typename T::HEdgePointer _hp ; }; /*----------------------------- EFADJ ------------------------------*/ /*! \brief \em Component: \b Edge-Face adjacency relation This component implement store the pointer to a face sharing this edge. \sa vcg::tri::UpdateTopology for functions that compute this relation \sa iterators */ template class EFAdj: public T { public: EFAdj(){_fp=0;} typename T::FacePointer &EFp() {return _fp; } typename T::FacePointer cEFp() const {return _fp; } int &EFi() {static int z=0; return z;} int cEFi() const {return _zp; } template < class LeftV> void ImportData(const LeftV & left ) { T::ImportData( left); } static bool HasEFAdjacency() { return true; } static bool HasEFAdjacencyOcc() { return true; } static void Name(std::vector & name){name.push_back(std::string("EFAdj"));T::Name(name);} private: typename T::FacePointer _fp ; int _zp ; }; /** @} */ // End Doxygen EdgeComponentGroup } // end namespace edge }// end namespace vcg #endif