// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Ilya Baran // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include inline double SQR(double x) { return x * x; } template struct Ball { EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(double, Dim) typedef Matrix VectorType; Ball() {} Ball(const VectorType &c, double r) : center(c), radius(r) {} VectorType center; double radius; }; namespace Eigen { namespace internal { template AlignedBox bounding_box(const Matrix &v) { return AlignedBox(v); } template AlignedBox bounding_box(const Ball &b) { return AlignedBox(b.center.array() - b.radius, b.center.array() + b.radius); } } // end namespace internal } template struct BallPointStuff //this class provides functions to be both an intersector and a minimizer, both for a ball and a point and for two trees { typedef double Scalar; typedef Matrix VectorType; typedef Ball BallType; typedef AlignedBox BoxType; BallPointStuff() : calls(0), count(0) {} BallPointStuff(const VectorType &inP) : p(inP), calls(0), count(0) {} bool intersectVolume(const BoxType &r) { ++calls; return r.contains(p); } bool intersectObject(const BallType &b) { ++calls; if((b.center - p).squaredNorm() < SQR(b.radius)) ++count; return false; //continue } bool intersectVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return !(r1.intersection(r2)).isNull(); } bool intersectVolumeObject(const BoxType &r, const BallType &b) { ++calls; return r.squaredExteriorDistance(b.center) < SQR(b.radius); } bool intersectObjectVolume(const BallType &b, const BoxType &r) { ++calls; return r.squaredExteriorDistance(b.center) < SQR(b.radius); } bool intersectObjectObject(const BallType &b1, const BallType &b2){ ++calls; if((b1.center - b2.center).norm() < b1.radius + b2.radius) ++count; return false; } bool intersectVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.contains(v); } bool intersectObjectObject(const BallType &b, const VectorType &v){ ++calls; if((b.center - v).squaredNorm() < SQR(b.radius)) ++count; return false; } double minimumOnVolume(const BoxType &r) { ++calls; return r.squaredExteriorDistance(p); } double minimumOnObject(const BallType &b) { ++calls; return std::max(0., (b.center - p).squaredNorm() - SQR(b.radius)); } double minimumOnVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return r1.squaredExteriorDistance(r2); } double minimumOnVolumeObject(const BoxType &r, const BallType &b) { ++calls; return SQR(std::max(0., r.exteriorDistance(b.center) - b.radius)); } double minimumOnObjectVolume(const BallType &b, const BoxType &r) { ++calls; return SQR(std::max(0., r.exteriorDistance(b.center) - b.radius)); } double minimumOnObjectObject(const BallType &b1, const BallType &b2){ ++calls; return SQR(std::max(0., (b1.center - b2.center).norm() - b1.radius - b2.radius)); } double minimumOnVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.squaredExteriorDistance(v); } double minimumOnObjectObject(const BallType &b, const VectorType &v){ ++calls; return SQR(std::max(0., (b.center - v).norm() - b.radius)); } VectorType p; int calls; int count; }; template struct TreeTest { typedef Matrix VectorType; typedef std::vector > VectorTypeList; typedef Ball BallType; typedef std::vector > BallTypeList; typedef AlignedBox BoxType; void testIntersect1() { BallTypeList b; for(int i = 0; i < 500; ++i) { b.push_back(BallType(VectorType::Random(), 0.5 * internal::random(0., 1.))); } KdBVH tree(b.begin(), b.end()); VectorType pt = VectorType::Random(); BallPointStuff i1(pt), i2(pt); for(int i = 0; i < (int)b.size(); ++i) i1.intersectObject(b[i]); BVIntersect(tree, i2); VERIFY(i1.count == i2.count); } void testMinimize1() { BallTypeList b; for(int i = 0; i < 500; ++i) { b.push_back(BallType(VectorType::Random(), 0.01 * internal::random(0., 1.))); } KdBVH tree(b.begin(), b.end()); VectorType pt = VectorType::Random(); BallPointStuff i1(pt), i2(pt); double m1 = (std::numeric_limits::max)(), m2 = m1; for(int i = 0; i < (int)b.size(); ++i) m1 = (std::min)(m1, i1.minimumOnObject(b[i])); m2 = BVMinimize(tree, i2); VERIFY_IS_APPROX(m1, m2); } void testIntersect2() { BallTypeList b; VectorTypeList v; for(int i = 0; i < 50; ++i) { b.push_back(BallType(VectorType::Random(), 0.5 * internal::random(0., 1.))); for(int j = 0; j < 3; ++j) v.push_back(VectorType::Random()); } KdBVH tree(b.begin(), b.end()); KdBVH vTree(v.begin(), v.end()); BallPointStuff i1, i2; for(int i = 0; i < (int)b.size(); ++i) for(int j = 0; j < (int)v.size(); ++j) i1.intersectObjectObject(b[i], v[j]); BVIntersect(tree, vTree, i2); VERIFY(i1.count == i2.count); } void testMinimize2() { BallTypeList b; VectorTypeList v; for(int i = 0; i < 50; ++i) { b.push_back(BallType(VectorType::Random(), 1e-7 + 1e-6 * internal::random(0., 1.))); for(int j = 0; j < 3; ++j) v.push_back(VectorType::Random()); } KdBVH tree(b.begin(), b.end()); KdBVH vTree(v.begin(), v.end()); BallPointStuff i1, i2; double m1 = (std::numeric_limits::max)(), m2 = m1; for(int i = 0; i < (int)b.size(); ++i) for(int j = 0; j < (int)v.size(); ++j) m1 = (std::min)(m1, i1.minimumOnObjectObject(b[i], v[j])); m2 = BVMinimize(tree, vTree, i2); VERIFY_IS_APPROX(m1, m2); } }; void test_BVH() { for(int i = 0; i < g_repeat; i++) { #ifdef EIGEN_TEST_PART_1 TreeTest<2> test2; CALL_SUBTEST(test2.testIntersect1()); CALL_SUBTEST(test2.testMinimize1()); CALL_SUBTEST(test2.testIntersect2()); CALL_SUBTEST(test2.testMinimize2()); #endif #ifdef EIGEN_TEST_PART_2 TreeTest<3> test3; CALL_SUBTEST(test3.testIntersect1()); CALL_SUBTEST(test3.testMinimize1()); CALL_SUBTEST(test3.testIntersect2()); CALL_SUBTEST(test3.testMinimize2()); #endif #ifdef EIGEN_TEST_PART_3 TreeTest<4> test4; CALL_SUBTEST(test4.testIntersect1()); CALL_SUBTEST(test4.testMinimize1()); CALL_SUBTEST(test4.testIntersect2()); CALL_SUBTEST(test4.testMinimize2()); #endif } }