/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.4 2004/10/25 08:21:17 ganovelli added: constructor,Set and some minor changes. Revision 1.3 2004/05/10 14:40:28 ganovelli name of adhacency function updated Revision 1.2 2004/05/10 14:02:29 ganovelli created Revision 1.1 2004/04/26 19:04:23 ganovelli created ****************************************************************************/ #ifndef __VCGLIB__EDGE_TYPE_BASE #define __VCGLIB__EDGE_TYPE_BASE #include #include namespace vcg { /** \ingroup segment @name segment Class Edge. This is the base class for definition of a face of the mesh. @param SVTYPE (Templete Parameter) Specifies the vertex class type. */ template > class EDGE_TYPE { public: /// The base type of the segment typedef EDGE_TYPE BaseEdgeType; /// The vertex type typedef SVTYPE VertexType; /// The type of the the vertex coordinate typedef Point3< ScalarType > CoordType; typedef Point3< ScalarType > NormalType; /// The bounding box type typedef Box3 BoxType; /// Default Empty Costructor inline EDGE_TYPE(){} inline EDGE_TYPE(VertexType* v0,VertexType* v1){v[0]=v0;v[1]=v1;} /// Costructor inline void Set(VertexType* v0,VertexType* v1){v[0]=v0;v[1]=v1;} /// This are the _flags of face, the default value is 0 int _flags; /***********************************************/ /** @name Vertex Pointer blah blah **/ //@{ protected: /// Vector of vertex pointer incident in the face VertexType *v[2]; public: /** Return the pointer to the j-th vertex of the face. @param j Index of the face vertex. */ inline SVTYPE * & V( const int j ) { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); assert(j >= 0); assert(j < 2); return v[j]; } inline const SVTYPE * const & V( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<2); return v[j]; } inline const SVTYPE * const & cV( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<2); return v[j]; } // Shortcut per accedere ai punti delle facce inline CoordType & P( const int j ) { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); assert(j>=0); assert(j<2); return v[j]->P(); } inline const CoordType & P( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<2); return v[j]->cP(); } inline const CoordType & cP( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<2); return v[j]->cP(); } /** Return the pointer to the ((j+1)%3)-th vertex of the face. @param j Index of the face vertex. */ inline SVTYPE * & V0( const int j ) { return V(j);} inline SVTYPE * & V1( const int j ) { return V((j+1)%2);} inline const SVTYPE * const & V0( const int j ) const { return V(j);} inline const SVTYPE * const & V1( const int j ) const { return V((j+1)%3);} inline const SVTYPE * const & cV0( const int j ) const { return cV(j);} inline const SVTYPE * const & cV1( const int j ) const { return cV((j+1)%3);} /// Shortcut per accedere ai punti delle facce inline CoordType & P0( const int j ) { return V(j)->P();} inline CoordType & P1( const int j ) { return V((j+1)%3)->P();} inline const CoordType & P0( const int j ) const { return V(j)->P();} inline const CoordType & P1( const int j ) const { return V((j+1)%3)->P();} inline const CoordType & cP0( const int j ) const { return cV(j)->P();} inline const CoordType & cP1( const int j ) const { return cV((j+1)%3)->P();} inline SVTYPE * & UberV( const int j ) { assert(j>=0); assert(j<2); return v[j]; } inline const SVTYPE * const & UberV( const int j ) const { assert(j>=0); assert(j<2); return v[j]; } //@} /***********************************************/ /** @name Normal blah blah **/ //@{ #ifdef __VCGLIB_EDGE_FN /// This vector indicates the normal of the face (defines if FACE_N is defined) protected: CoordType _n; public: #endif /// Return the reference of the normal to the face (if __VCGLIB_EDGE_FN is defined). inline CoordType & N() { #ifdef __VCGLIB_EDGE_FN return _n; #else assert(0); return *(CoordType *)0; #endif } /// Return the reference of the normal to the face (if __VCGLIB_EDGE_FN is defined). inline const CoordType & N() const { #ifdef __VCGLIB_EDGE_FN return _n; #else return *(CoordType *)0; #endif } /// Return the reference of the normal to the face (if __VCGLIB_EDGE_FN is defined). inline const CoordType cN() const { #ifdef __VCGLIB_EDGE_FN return _n; #else return *(CoordType *)0; #endif } //@} /***********************************************/ /** @name Quality blah blah **/ //@{ #ifdef __VCGLIB_EDGE_FQ protected: float _q; #endif public: float & Q() { #ifdef __VCGLIB_EDGE_FQ return _q; #else assert(0); return *(float*)(&_flags); #endif } const float & Q() const { #ifdef __VCGLIB_EDGE_FQ return _q; #else assert(0); return *(float*)(&_flags); #endif } //@} /***********************************************/ /** @name Texture blah blah **/ //@{ // Per Wedge Texture Coords protected: #ifdef __VCGLIB_EDGE_WT TCTYPE _wt[3]; #endif public: TCTYPE & WT(const int i) { #ifdef __VCGLIB_EDGE_WT return _wt[i]; #else assert(0); return *(TCTYPE*)(&_flags); #endif } const TCTYPE & WT(const int i) const { #ifdef __VCGLIB_EDGE_WT return _wt[i]; #else assert(0); return *(TCTYPE*)(&_flags); #endif } //@} /***********************************************/ /** @name Colors blah blah **/ //@{ protected: #ifdef __VCGLIB_EDGE_FC Color4b _c; #endif public: Color4b & C() { #ifdef __VCGLIB_EDGE_FC return _c; #else assert(0); return *(Color4b*)(&_flags); #endif } const Color4b C() const { #ifdef __VCGLIB_EDGE_FC return _c; #else return Color4b(Color4b::White); #endif } protected: #ifdef __VCGLIB_EDGE_WC Color4b _wc[3]; #endif public: Color4b & WC(const int i) { #ifdef __VCGLIB_EDGE_WC return _wc[i]; #else assert(0); return *(Color4b*)(&_flags); #endif } const Color4b WC(const int i) const { #ifdef __VCGLIB_EDGE_WC return _wc[i]; #else assert(0); return Color4b(Color4b::White); #endif } //@} /***********************************************/ /** @name Adjacency blah blah **/ //@{ #if (defined(__VCGLIB_EDGE_AE) && defined(__VCGLIB_EDGE_SA)) #error Error: You cannot specify face-to-face and shared topology together #endif #if (defined(__VCGLIB_EDGE_VA) && defined(__VCGLIB_EDGE_SA)) #error Error: You cannot specify vertex-face and shared topology together #endif protected: #if defined(__VCGLIB_EDGE_AE) /// Vector of face pointer, it's used to indicate the adjacency relations (defines if FACE_A is defined) EDGENAME *ee[3]; // Facce adiacenti /// Index of the face in the arrival face char zs[4]; #endif #ifdef __VCGLIB_EDGE_VA ///Vettore di puntatori a faccia, utilizzato per indicare le adiacenze vertice faccia EDGENAME *ev[3]; char zv[3]; #endif #ifdef __VCGLIB_EDGE_SA ///Vettore di puntatori a faccia, utilizzato per indicare le adiacenze vertice faccia EDGENAME *es[3]; char zs[3]; #endif public: /** Return the pointer to the j-th adjacent edge. @param j Index of the edge. */ inline EDGENAME * & EEp( const int j ) { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); assert(j>=0); assert(j<2); #if defined(__VCGLIB_EDGE_AE) return ee[j]; #elif defined(__VCGLIB_EDGE_SA) return es[j]; #else assert(0); static EDGENAME *dum=0; return dum; #endif } inline const EDGENAME * const & EEp( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<2); #if defined(__VCGLIB_EDGE_AE) return ee[j]; #elif defined(__VCGLIB_EDGE_SA) return es[j]; #else assert(0); return (EDGENAME *)this; #endif } inline EDGENAME * & EEp1( const int j ) { return EEp((j+1)%2);} inline const EDGENAME * const& EEp1( const int j ) const { return EEp((j+1)%2);} /** Return the pointer to the j-th adjacent face. @param j Index of the edge. */ inline EDGENAME * & UberEEp( const int j ) { assert(j>=0); assert(j<2); #if defined(__VCGLIB_EDGE_AE) return ee[j]; #elif defined(__VCGLIB_EDGE_SA) return es[j]; #else assert(0); // if you stop here you are probably trying to use FF topology in a face without it return *((EDGENAME **)(_flags)); #endif } inline const EDGENAME * const & UberEEp( const int j ) const { assert(j>=0); assert(j<2); #if defined(__VCGLIB_EDGE_AE) return ee[j]; #elif defined(__VCGLIB_EDGE_SA) return es[j]; #else assert(0); // if you stop here you are probably trying to use FF topology in a face without it return *((EDGENAME **)(_flags)); #endif } inline EDGENAME * & VEp( const int j ) { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); assert(j>=0); assert(j<2); #ifdef __VCGLIB_EDGE_VA return ev[j]; #elif defined(__VCGLIB_EDGE_SA) return es[j]; #else assert(0); // you are probably trying to use VF topology in a vertex without it return *((EDGENAME **)(_flags)); #endif } inline const EDGENAME * const & VEp( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<2); #ifdef __VCGLIB_EDGE_VA return ev[j]; #elif defined(__VCGLIB_EDGE_SA) return es[j]; #else assert(0); return (EDGENAME *)this; #endif } /** Return the index that the face have in the j-th adjacent face. @param j Index of the edge. */ inline char & EEi( const int j ) { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); assert(j>=0); assert(j<2); #if defined(__VCGLIB_EDGE_AE) return zs[j]; #elif defined(__VCGLIB_EDGE_SA) return zs[j]; #else assert(0); return *(char *)&_flags; // tanto per farlo compilare... #endif } inline const char & EEi( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<2); #if defined(__VCGLIB_EDGE_AE) return zs[j]; #elif defined(__VCGLIB_EDGE_SA) return zs[j]; #else assert(0); return *(char *)&_flags; #endif } /** Return the index that the face have in the j-th adjacent face. @param j Index of the edge. */ inline char & UberZ( const int j ) { assert(j>=0); assert(j<2); #if defined(__VCGLIB_EDGE_AE) return zs[j]; #elif defined(__VCGLIB_EDGE_SA) return zs[j]; #else assert(0); return *(char *)&_flags; #endif } inline const char & UberZ( const int j ) const { assert(j>=0); assert(j<2); #if defined(__VCGLIB_EDGE_AE) return zs[j]; #elif defined(__VCGLIB_EDGE_SA) return zs[j]; #else assert(0); return *(char *)&_flags; #endif } inline char & VEi( const int j ) { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); assert(j>=0); assert(j<2); #ifdef __VCGLIB_EDGE_VA return zv[j]; #elif defined(__VCGLIB_EDGE_SA) return zs[j]; #else assert(0); return *(char *)&_flags; #endif } inline const char & VEi( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<2); #ifdef __VCGLIB_EDGE_VA return zv[j]; #elif defined(__VCGLIB_EDGE_SA) return zs[j]; #else assert(0); return *(char *)&_flags; #endif } //@} /***********************************************/ /** @name Mark blah blah **/ //@{ #ifdef __VCGLIB_EDGE_FM /// Incremental mark (defines if FACE_I is defined) int imark; #endif // Mark #ifdef __VCGLIB_EDGE_M inline int & IMark() { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); return imark; } inline const int & IMark() const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); return imark; } #endif // Mark /// Initialize the imark system of the face inline void InitIMark() { #ifdef __VCGLIB_EDGE_M imark = 0; #endif } //@} /***********************************************/ /** @name Flags blah blah **/ //@{ enum { // This bit indicate that the face is deleted from the mesh DELETED = 0x00000001, // cancellato // This bit indicate that the face of the mesh is not readable NOTREAD = 0x00000002, // non leggibile (ma forse modificabile) // This bit indicate that the face is not modifiable NOTWRITE = 0x00000004, // non modificabile (ma forse leggibile) // This bit indicate that the face is modified SELECTED = 0x00000020, // Selection _flags // Border _flags, it is assumed that BORDERi = BORDER0<>1; return true; } assert(0); return false; } void ClearFlags() {_flags=0;} /// Return the _flags. inline int & Flags () { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); return _flags; } inline const int & Flags () const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); return _flags; } /// Ritorna il _flags senza effettuare alcun controllo sui relativi bit inline int & UberFlags() { return _flags; } inline const int UberFlags() const { return _flags; } /// This function checks if the face is deleted bool IsD() const {return (_flags & DELETED) != 0;} /// This function mark the face as deleted void SetD() {_flags |=DELETED;} /// This function mark the face as not deleted void ClearD() {_flags &= (~DELETED);} /// This function checks if the face is deleted bool IsDeleted() const {return IsD();} /// This function checks if the face is readable bool IsR() const {return (_flags & NOTREAD) == 0;} /// This function marks the face as readable void SetR() {_flags &= (~NOTREAD);} /// This function marks the face as not readable void ClearR() {_flags |=NOTREAD;} /// This function checks if the face is readable bool IsW() const {return (_flags & NOTWRITE)== 0;} /// This function marks the vertex as not writable void SetW() {_flags &=(~NOTWRITE);} /// This function marks the face as not writable void ClearW() {_flags |=NOTWRITE;} /// This funcion checks whether the face is both readable and modifiable bool IsRW() const {return (_flags & (NOTREAD | NOTWRITE)) == 0;} /// This function checks if the face is selected bool IsS() const {return (_flags & SELECTED) != 0;} /// This function select the face void SetS() {_flags |=SELECTED;} /// This funcion execute the inverse operation of SetS() void ClearS() {_flags &= (~SELECTED);} /// This function checks if the face is selected bool IsB(int i) const {return (_flags & (BORDER0<P() ); bb.Add( v[1]->P() ); } /***********************************************/ /** @name Reflection Functions Static functions that give information about the current vertex type. Reflection is a mechanism making it possible to investigate yourself. Reflection is used to investigate format of objects at runtime, invoke methods and access fields of these objects. Here we provide static const functions that are resolved at compile time and they give information about the data (normal, color etc.) supported by the current vertex type. **/ //@{ static bool HasEdgeNormal() { #ifdef __VCGLIB_EDGE_FN return true; #else return false; #endif } static bool HasEdgeQuality() { #ifdef __VCGLIB_EDGE_FQ return true; #else return false; #endif } static bool HasEdgeColor() { #ifdef __VCGLIB_EDGE_FC return true; #else return false; #endif } static bool HasEEAdjacency() { #if (defined(__VCGLIB_EDGE_AE) || defined(__VCGLIB_EDGE_AE)) return true; #else return false; #endif } static bool HasVEAdjacency() { #if (defined(__VCGLIB_EDGE_VA) || defined(__VCGLIB_EDGE_AE)) return true; #else return false; #endif } static bool HasSharedAdjacency() { #if defined(__VCGLIB_EDGE_AE) return true; #else return false; #endif } static bool HasEdgeMark() { #ifdef __VCGLIB_EDGE_FC return true; #else return false; #endif } //@} /// operator to compare two faces inline bool operator == ( const EDGENAME & f ) const { for(int i=0; i<3; ++i) if( (V(i) != f.V(0)) && (V(i) != f.V(1)) ) return false; return true; } /** Calcola i coefficienti della combinazione convessa. @param bq Punto appartenente alla faccia @param a Valore di ritorno per il vertice V(0) @param b Valore di ritorno per il vertice V(1) @param _c Valore di ritorno per il vertice V(2) @return true se bq appartiene alla faccia, false altrimenti */ bool InterpolationParameters(const CoordType & bq, ScalarType &a, ScalarType &_b) const { const ScalarType EPSILON = ScalarType(0.000001); ScalarType l; #define x1 (cV(0)->P().x()) #define y1 (cV(0)->P().y()) #define z1 (cV(0)->P().z()) #define x2 (cV(1)->P().x()) #define y2 (cV(1)->P().y()) #define z2 (cV(1)->P().z()) #define px (bq.x()) #define py (bq.y()) #define pz (bq.z()) a = (px-x1)/(x2-x1); l = (py-y1)/(y2-y1); if( ( l < a -EPSILON) || ( l > a +EPSILON)) return false; l = (pz-z1)/(z2-z1); if( ( l < a -EPSILON) || ( l > a +EPSILON)) return false; _b = 1-a; return true; #undef x1 #undef y1 #undef z1 #undef x2 #undef y2 #undef z2 #undef px #undef py #undef pz } /// Return the DOUBLE of the area of the face ScalarType Length() const { return Norm( (V(1)->P() - V(0)->P()).Norm()); } CoordType Barycenter() const { return (V(0)->P()+V(1)->P())/ScalarType(2.0); } }; //end Class } // end namespace #endif