/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: gen_normal.h,v $ ****************************************************************************/ #ifndef __VCG_GEN_NORMAL #define __VCG_GEN_NORMAL #include <algorithm> namespace vcg { template <class ScalarType> class GenNormal { public: typedef Point3<ScalarType> Point3x; static void Random(int vn, std::vector<Point3<ScalarType > > &NN) { NN.clear(); while(NN.size()<vn) { Point3x pp(((float)rand())/RAND_MAX, ((float)rand())/RAND_MAX, ((float)rand())/RAND_MAX); pp=pp*2.0-Point3x(1,1,1); if(pp.SquaredNorm()<1) { Normalize(pp); NN.push_back(pp); } } } static void UniformCone(int vn, std::vector<Point3<ScalarType > > &NN, ScalarType AngleRad, Point3x dir=Point3x(0,1,0)) { std::vector<Point3<ScalarType > > NNT; NN.clear(); // per prima cosa si calcola il volume della spherical cap di angolo AngleRad ScalarType Height= 1.0 - cos(AngleRad); // height is measured from top... // Surface is the one of the tangent cylinder ScalarType CapArea = 2.0*M_PI*Height; ScalarType Ratio = CapArea / (4.0*M_PI ); printf("----------AngleRad %f Angledeg %f ratio %f vn %i vn2 %i \n",AngleRad,math::ToDeg(AngleRad),Ratio,vn,int(vn/Ratio)); Uniform(vn/Ratio,NNT); printf("asked %i got %i (expecting %i instead of %i)\n", int(vn/Ratio), NNT.size(), int(NNT.size()*Ratio), vn); typename std::vector<Point3<ScalarType> >::iterator vi; ScalarType DotProd = cos(AngleRad); for(vi=NNT.begin();vi!=NNT.end();++vi) { if(dir.dot(*vi) >= DotProd) NN.push_back(*vi); } } static void Uniform(int vn, std::vector<Point3<ScalarType > > &NN) { OctaLevel pp; int ll=10; while(pow(4.0f,ll)+2>vn) ll--; pp.Init(ll); sort(pp.v.begin(),pp.v.end()); int newsize = unique(pp.v.begin(),pp.v.end())-pp.v.begin(); pp.v.resize(newsize); NN=pp.v; Perturb(NN); } static void Perturb(std::vector<Point3<ScalarType > > &NN) { float width=0.2f/sqrt(float(NN.size())); typename std::vector<Point3<ScalarType> >::iterator vi; for(vi=NN.begin(); vi!=NN.end();++vi) { Point3x pp(((float)rand())/RAND_MAX, ((float)rand())/RAND_MAX, ((float)rand())/RAND_MAX); pp=pp*2.0-Point3x(1,1,1); pp*=width; (*vi)+=pp; (*vi).Normalize(); } } /* Trova la normale piu vicina a quella data. Assume che tutte normale in ingresso sia normalizzata; */ static int BestMatchingNormal(const Point3x &n, std::vector<Point3x> &nv) { int ret=-1; ScalarType bestang=-1; ScalarType cosang; typename std::vector<Point3x>::iterator ni; for(ni=nv.begin();ni!=nv.end();++ni) { cosang=(*ni).dot(n); if(cosang>bestang) { bestang=cosang; ret=ni-nv.begin(); } } assert(ret>=0 && ret <int(nv.size())); return ret; } private : class OctaLevel { public: std::vector<Point3x> v; int level; int sz; Point3x &Val(int i, int j) { assert(i>=0 && i<sz); assert(j>=0 && j<sz); return v[i+j*sz]; } void Init(int lev) { sz=pow(2.0f,lev+1)+1; v.resize(sz*sz); if(lev==0) { Val(0,0)=Point3x( 0, 0,-1); Val(0,1)=Point3x( 0, 1, 0); Val(0,2)=Point3x( 0, 0,-1); Val(1,0)=Point3x(-1, 0, 0); Val(1,1)=Point3x( 0, 0, 1); Val(1,2)=Point3x( 1, 0, 0); Val(2,0)=Point3x( 0, 0,-1); Val(2,1)=Point3x( 0,-1, 0); Val(2,2)=Point3x( 0, 0,-1); } else { OctaLevel tmp; tmp.Init(lev-1); int i,j; for(i=0;i<sz;++i) for(j=0;j<sz;++j) { if((i%2)==0 && (j%2)==0) Val(i,j)=tmp.Val(i/2,j/2); if((i%2)!=0 && (j%2)==0) Val(i,j)=(tmp.Val(i/2+0,j/2)+tmp.Val(i/2+1,j/2))/2.0; if((i%2)==0 && (j%2)!=0) Val(i,j)=(tmp.Val(i/2,j/2+0)+tmp.Val(i/2,j/2+1))/2.0; if((i%2)!=0 && (j%2)!=0) Val(i,j)=(tmp.Val(i/2+0,j/2+0)+tmp.Val(i/2+0,j/2+1)+tmp.Val(i/2+1,j/2+0)+tmp.Val(i/2+1,j/2+1))/4.0; } typename std::vector<Point3<ScalarType> >::iterator vi; for(vi=v.begin(); vi!=v.end();++vi) (*vi).Normalize(); } } }; }; } #endif