#include #include "nexusmt.h" #include #include using namespace nxs; using namespace vcg; using namespace std; /*void Policy::Visit(Node *node, std::queue &qnode) { std::vector::iterator n; for(n = node->in.begin(); n != node->in.end(); n++) if(!(*n)->visited) Visit(*n, qnode); node->visited = true; qnode.push(node); } bool FrustumPolicy::Expand(unsigned int patch, Nexus::PatchInfo &entry) { if(entry.error == 0) return false; float dist = Distance(entry.sphere, frustum.ViewPoint()); if(dist < 0) return true; // dist = pow(dist, 1.2); return entry.error > error * frustum.Resolution(dist); } */ float Metric::GetError(Node *node) { float max_error = 0; vector::iterator frag; for(frag = node->frags.begin(); frag != node->frags.end(); frag++) { float error = GetError(*frag); if(max_error < error) max_error = error; } return max_error; } float Metric::GetError(Frag &frag) { float max_error = 0; vector::iterator cell; for(cell = frag.begin(); cell != frag.end(); cell++) { float error = GetError(*cell); if(max_error < error) max_error = error; } return max_error; } float FrustumMetric::GetError(unsigned int cell) { float max_error = 0; Nexus::PatchInfo &entry = (*index)[cell]; Sphere3f &sphere = entry.sphere; float dist = Distance(sphere, frustum.ViewPoint()); if(dist < 0) return 1e40; float error = entry.error/frustum.Resolution(dist); if(frustum.IsOutside(sphere.Center(), sphere.Radius())) error /= 4; return error; } void Policy::Init() { ram_used = 0; } bool Policy::Expand(TNode &node) { //expand if node error > target error if(ram_used >= ram_size) return false; //cerr << "Error: " << error << " node.error: " << node.error << endl; return node.error > error; } void Policy::NodeVisited(Node *node) { //TODO write this a bit more elegant. //first we process arcs removed: for(unsigned int i = 0; i < node->out.size(); i++) { assert(!(node->out[i]->visited)); Frag &frag = node->frags[i]; for(unsigned int k = 0; k < frag.size(); k++) { unsigned int rr = frag.size(); unsigned int tmp = frag[k]; unsigned int sz = entries->size(); assert(tmp < sz); PatchEntry &entry = (*entries)[frag[k]]; ram_used += entry.ram_size; } } vector::iterator from; for(from = node->in.begin(); from != node->in.end(); from++) { assert((*from)->visited); vector &frags = (*from)->frags; for(unsigned int i = 0; i < frags.size(); i++) { if((*from)->out[i] == node) { vector &frag = frags[i]; for(unsigned int k = 0; k < frag.size(); k++) { PatchEntry &entry = (*entries)[frag[k]]; ram_used -= entry.ram_size; } } } } } NexusMt::NexusMt(): vbo_mode(VBO_AUTO), metric(NULL), mode(SMOOTH) { metric = new FrustumMetric(); metric->index = &index; policy.error = 4; policy.ram_size = 64000000; } NexusMt::~NexusMt() {} bool NexusMt::Load(const string &filename, bool readonly) { if(!Nexus::Load(filename, readonly)) return false; LoadHistory(); policy.entries = &patches.patches; use_colors = false; use_normals = false; use_textures = false; use_data = false; SetComponent(COLOR, true); SetComponent(NORMAL, true); SetComponent(TEXTURE, true); SetComponent(DATA, true); return true; } bool NexusMt::InitGL(Vbo mode, unsigned int vbosize) { GLenum ret = glewInit(); if(ret != GLEW_OK) return false; if(!GLEW_ARB_vertex_buffer_object) { cerr << "No vbo available!" << endl; vbo_mode = VBO_OFF; } patches.vbo_size = vbosize / patches.chunk_size; if(vbo_mode == VBO_OFF) patches.vbo_size = 0; return true; } void NexusMt::Render() { patches.Flush(); vector cells; metric->GetView(); policy.Init(); tri_total = 0; tri_rendered = 0; Extract(cells); Draw(cells); } void NexusMt::Draw(vector &cells) { Frustumf frustum; frustum.GetView(); glEnableClientState(GL_VERTEX_ARRAY); if(use_colors) glEnableClientState(GL_COLOR_ARRAY); if(use_normals) glEnableClientState(GL_NORMAL_ARRAY); //TODO textures and data. for(unsigned int i = 0; i < cells.size(); i++) { unsigned int cell = cells[i]; Nexus::PatchInfo &entry = index[cell]; tri_total += entry.nface; //frustum culling if(frustum.IsOutside(entry.sphere.Center(), entry.sphere.Radius())) continue; tri_rendered += entry.nface; Patch &patch = GetPatch(cell, false); char *fstart; char *vstart; char *cstart; char *nstart; if(vbo_mode != VBO_OFF) { unsigned int vbo_array; unsigned int vbo_element; patches.GetVbo(cell, vbo_element, vbo_array); assert(vbo_element); assert(vbo_array); glBindBufferARB(GL_ARRAY_BUFFER_ARB, vbo_array); glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, vbo_element); fstart = NULL; vstart = NULL; cstart = (char *)(sizeof(float) * patch.cstart); nstart = (char *)(sizeof(float) * patch.nstart); } else { fstart = (char *)patch.FaceBegin(); vstart = (char *)patch.VertBegin(); cstart = (char *)patch.ColorBegin(); nstart = (char *)patch.Norm16Begin(); } glVertexPointer(3, GL_FLOAT, 0, vstart); if(use_colors) glColorPointer(4, GL_UNSIGNED_BYTE, 0, cstart); if(use_normals) glNormalPointer(GL_SHORT, 8, nstart); switch(mode) { case POINTS: glDrawArrays(GL_POINTS, 0, patch.nv); break; case DEBUG: glColor3ub((cell * 27)%255, (cell * 37)%255, (cell * 87)%255); case SMOOTH: if(signature & NXS_FACES) glDrawElements(GL_TRIANGLES, patch.nf * 3, GL_UNSIGNED_SHORT, fstart); else if(signature & NXS_STRIP) glDrawElements(GL_TRIANGLE_STRIP, patch.nf, GL_UNSIGNED_SHORT, fstart); break; case FLAT: if(signature & NXS_FACES) { glBegin(GL_TRIANGLES); for(int i = 0; i < patch.nf; i++) { unsigned short *f = patch.Face(i); Point3f &p0 = patch.Vert(f[0]); Point3f &p1 = patch.Vert(f[1]); Point3f &p2 = patch.Vert(f[2]); Point3f n = ((p1 - p0) ^ (p2 - p0)); glNormal3f(n[0], n[1], n[2]); glVertex3f(p0[0], p0[1], p0[2]); glVertex3f(p1[0], p1[1], p1[2]); glVertex3f(p2[0], p2[1], p2[2]); } glEnd(); } else if(signature & NXS_STRIP) { cerr << "Unsupported rendering mode sorry\n"; exit(0); } break; default: cerr << "Unsupported rendering mode sorry\n"; exit(0); break; } } glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); } void NexusMt::SetRamExtractionSize(unsigned int r_size) { policy.ram_size = r_size/patches.chunk_size; } void NexusMt::SetMetric(NexusMt::MetricKind kind) { //do nothing at the moment. } void NexusMt::SetError(float error) { policy.error = error; } void NexusMt::SetVboSize(unsigned int _vbo_size) { patches.vbo_size = _vbo_size; } bool NexusMt::SetMode(Mode _mode) { mode = _mode; return true; } bool NexusMt::SetComponent(Component c, bool on) { if(c == COLOR && (signature & NXS_COLORS)) use_colors = on; if(c == NORMAL && (signature & NXS_NORMALS_SHORT)) use_normals = on; if(c == TEXTURE && (signature & NXS_TEXTURES_SHORT)) use_textures = on; if(c == DATA && (signature & NXS_DATA32)) use_data = on; components = COLOR * use_colors + NORMAL * use_normals + TEXTURE * use_textures + DATA * use_data; return true; } bool NexusMt::SetComponents(unsigned int mask) { SetComponent(COLOR, (mask & COLOR) != 0); SetComponent(NORMAL, (mask & NORMAL) != 0); SetComponent(TEXTURE, (mask & TEXTURE) != 0); SetComponent(DATA, (mask & DATA) != 0); components = mask; if( ((mask & COLOR) && !(signature & NXS_COLORS)) || ((mask & NORMAL) && !(signature & NXS_NORMALS_SHORT)) || ((mask & TEXTURE) && !(signature & NXS_TEXTURES_SHORT)) || ((mask & DATA) && !(signature & NXS_DATA32)) ) return false; return true; } void NexusMt::LoadHistory() { //The last update erases everything. assert(history[0].erased.size() == 0); //maps cell -> node containing it map cell_node; nodes.resize(history.size()); //building fragments and nodes. unsigned int current_node = 0; vector::iterator u; for(u = history.begin(); u != history.end(); u++) { Node &node = nodes[current_node]; node.error = 0; //created cells belong to this node, we look also for max error. for(unsigned int i = 0; i < (*u).created.size(); i++) { unsigned int cell = (*u).created[i]; if(index[cell].error > node.error) node.error = index[cell].error; cell_node[cell] = current_node; } //Every erased cell already belonged to a node. //we record for each node its cells. map > node_erased; for(unsigned int i = 0; i < (*u).erased.size(); i++) { unsigned int cell = (*u).erased[i]; assert(cell_node.count(cell)); node_erased[cell_node[cell]].push_back(cell); } //for every node with erased cells we build a frag and //put the corresponding cells in it. map >::iterator e; for(e = node_erased.begin(); e != node_erased.end(); e++) { //Build a new Frag. Frag fr; float max_err = -1; //Fill it with erased cells. vector &cells = (*e).second; vector::iterator k; for(k = cells.begin(); k != cells.end(); k++) { unsigned int cell = (*k); assert(cell < index.size()); fr.push_back(cell); if(index[cell].error > max_err) max_err = index[cell].error; } //Add the new Frag to the node. unsigned int floor_node = (*e).first; Node &oldnode = nodes[floor_node]; oldnode.frags.push_back(fr); if(node.error < max_err) node.error = max_err; //Update in and out of the nodes. node.in.push_back(&oldnode); oldnode.out.push_back(&node); } current_node++; } } void NexusMt::ClearHistory() { nodes.clear(); } /*void NexusMt::ExtractFixed(vector &selected, float error) { std::vector::iterator n; for(n = nodes.begin(); n != nodes.end(); n++) (*n).visited = false; std::queue qnodo; qnodo.push(&nodes[0]); nodes[0].visited = true; for( ; !qnodo.empty(); qnodo.pop()) { Node &node = *qnodo.front(); std::vector::iterator fragment; std::vector::iterator on; for(on = node.out.begin(), fragment = node.frags.begin(); on != node.out.end(); ++on, ++fragment) { if((*on)->visited) continue; if(error < (*on)->error) { //need to expand this node. qnodo.push(*on); (*on)->visited = 1; } else { vector::iterator cell; for(cell=(*fragment).begin(); cell != (*fragment).end(); ++cell) selected.push_back(*cell); } } } } */ void NexusMt::Extract(std::vector &selected) { std::vector::iterator n; for(n = nodes.begin(); n != nodes.end(); n++) { (*n).visited = false; (*n).pushed = false; } std::vector heap; Node *root = &nodes[0]; VisitNode(root, heap); while(heap.size()) { pop_heap(heap.begin(), heap.end()); TNode tnode = heap.back(); heap.pop_back(); Node *node = tnode.node; if(node->visited) continue; bool expand = policy.Expand(tnode); if(expand) VisitNode(node, heap); } Select(selected); } /*void NexusMt::Extract(std::vector &selected, Policy *policy) { std::vector::iterator n; for(n = nodes.begin(); n != nodes.end(); n++) (*n).visited = false; std::queue qnodo; qnodo.push(&nodes[0]); nodes[0].visited = true; for( ; !qnodo.empty(); qnodo.pop()) { Node &node = *qnodo.front(); std::vector::iterator i; std::vector::iterator on; for(i = node.frags.begin(), on = node.out.begin(); i != node.frags.end(); i++, on++) { if((*on)->visited) continue; Frag &frag = (*i); std::vector::iterator cell; for(cell = frag.begin(); cell != frag.end(); cell++) { if(policy->Expand(*cell, index[*cell])) policy->Visit(*on, qnodo); } } } Select(selected); }*/ void NexusMt::Select(vector &selected) { selected.clear(); std::vector::iterator i; for(i = nodes.begin(); i != nodes.end(); i++) { Node &node = *i; if(!node.visited) continue; std::vector::iterator n; std::vector::iterator f; for(n = node.out.begin(), f = node.frags.begin(); n != node.out.end(); n++, f++) { if(!(*n)->visited || (*n)->error == 0) { vector::iterator c; Frag &frag = (*f); for(c = frag.begin(); c != frag.end(); c++) selected.push_back(*c); } } } } void NexusMt::VisitNode(Node *node, vector &heap) { if(node->visited) return; vector::iterator i; for(i = node->in.begin(); i != node->in.end(); i++) VisitNode(*i, heap); for(unsigned int k = 0; k < node->out.size(); k++) { Node *outnode = node->out[k]; float error = metric->GetError(node->frags[k]); // if(node->pushed) continue heap.push_back(TNode(outnode, error)); push_heap(heap.begin(), heap.end()); } node->visited = true; policy.NodeVisited(node); }