/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef MESH_TO_MATRIX #define MESH_TO_MATRIX #include #include using namespace std; namespace vcg { namespace tri { template < typename TriMeshType > class MeshToMatrix { // define types typedef typename TriMeshType::FaceType FaceType; typedef typename TriMeshType::VertexType VertexType; typedef typename TriMeshType::CoordType CoordType; typedef typename TriMeshType::ScalarType ScalarType; static void GetTriEdgeAdjacency(const Eigen::MatrixXd& V, const Eigen::MatrixXi& F, Eigen::MatrixXi& EV, Eigen::MatrixXi& FE, Eigen::MatrixXi& EF) { //assert(igl::is_manifold(V,F)); std::vector > ETT; for(int f=0;f v2) std::swap(v1,v2); std::vector r(4); r[0] = v1; r[1] = v2; r[2] = f; r[3] = i; ETT.push_back(r); } std::sort(ETT.begin(),ETT.end()); // count the number of edges (assume manifoldness) int En = 1; // the last is always counted for(unsigned i=0;i& r1 = ETT[i]; EV(En,0) = r1[0]; EV(En,1) = r1[1]; EF(En,0) = r1[2]; FE(r1[2],r1[3]) = En; } else { std::vector& r1 = ETT[i]; std::vector& r2 = ETT[i+1]; EV(En,0) = r1[0]; EV(En,1) = r1[1]; EF(En,0) = r1[2]; EF(En,1) = r2[2]; FE(r1[2],r1[3]) = En; FE(r2[2],r2[3]) = En; ++i; // skip the next one } ++En; } // Sort the relation EF, accordingly to EV // the first one is the face on the left of the edge for(unsigned i=0; i::FaceFace(mesh); FFp = Eigen::MatrixXi(mesh.FN(),3); FFi = Eigen::MatrixXi(mesh.FN(),3); for (int i = 0; i < mesh.FN(); i++) for (int j = 0; j < 3; j++) { FaceType *AdjF=mesh.face[i].FFp(j); if (AdjF==&mesh.face[i]) { FFp(i,j)=-1; FFi(i,j)=-1; } else { FFp(i,j)=tri::Index(mesh,AdjF); FFi(i,j)=mesh.face[i].FFi(j); } } } // get edge to face and edge to vertex adjacency static void GetTriEdgeAdjacency(const TriMeshType &mesh, Eigen::MatrixXi& EV, Eigen::MatrixXi& FE, Eigen::MatrixXi& EF) { Eigen::MatrixXi faces; Eigen::MatrixXd vert; GetTriMeshData(mesh,faces,vert); GetTriEdgeAdjacency(vert,faces,EV,FE,EF); } static Eigen::Vector3d VectorFromCoord(CoordType v) { Eigen::Vector3d ret(v[0],v[1],v[2]); return ret; } }; } // end namespace tri } // end namespace vcg #endif // MESH_TO_MATRIX_CONVERTER