/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.11 2007/05/02 13:25:45 zifnab1974 only use typename when necessary Revision 1.10 2007/04/10 22:46:57 pietroni - line 152 changed call intersection to IntersectionPlaneTriangle because changing in function's name Revision 1.9 2007/01/03 15:51:28 pietroni added initial define and included missing files Revision 1.8 2006/01/19 14:06:37 spinelli add std:: namespace... Revision 1.7 2005/10/03 16:18:15 spinelli add template parameter for spatialindexing struction Revision 1.6 2005/05/30 09:11:20 ganovelli header added, error in include Revision 1.3 2005/05/17 21:19:37 ganovelli some std::and typename missing (CRS4) Revision 1.2 2005/03/08 14:42:22 ganovelli added vcg header ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #ifndef __VCGLIB_INTERSECTION_TRI_MESH #define __VCGLIB_INTERSECTION_TRI_MESH namespace vcg{ /** \addtogroup complex */ /*@{*/ /** Function computing the intersection between a grid and a plane. It returns all the cells intersected */ template < typename GridType,typename ScalarType> bool Intersect( GridType & grid,Plane3 plane, std::vector &cells){ Point3d p,_d; Plane3d pl; _d.Import(plane.Direction()); pl.SetDirection(_d); pl.SetOffset(plane.Offset()); for( int ax = 0; ax <3; ++ax) { int axis = ax; int axis0 = (axis+1)%3; int axis1 = (axis+2)%3; int i,j; Point3i pi; Segment3 seg; seg.P0().Import(grid.bbox.min); seg.P1().Import(grid.bbox.min); seg.P1()[axis] = grid.bbox.max[axis]; for(i = 0 ; i <= grid.siz[axis0]; ++i){ for(j = 0 ; j <= grid.siz[axis1]; ++j) { seg.P0()[axis0] = grid.bbox.min[axis0]+ (i+0.01) * grid.voxel[axis0] ; seg.P1()[axis0] = grid.bbox.min[axis0]+ (i+0.01) * grid.voxel[axis0]; seg.P0()[axis1] = grid.bbox.min[axis1]+ (j+0.01) * grid.voxel[axis1]; seg.P1()[axis1] = grid.bbox.min[axis1]+ (j+0.01) * grid.voxel[axis1]; if ( Intersection(pl,seg,p)) { pi[axis] = std::min(std::max(0,(int)floor((p[axis ]-grid.bbox.min[axis])/grid.voxel[axis])),grid.siz[axis]); pi[axis0] = i; pi[axis1] = j; grid.Grid(pi,axis,cells); } } } } sort(cells.begin(),cells.end()); cells.erase(unique(cells.begin(),cells.end()),cells.end()); return false; } /*@}*/ /** Basic Function computing the intersection between a trimesh and a plane, provided a pointer to an space indexing data structure (e.g. a grid, an oct-tree..) */ template < typename TriMeshType, typename EdgeMeshType, class ScalarType, class IndexingType > bool Intersection( /*TriMeshType & m, */ Plane3 pl, EdgeMeshType & em, double& ave_length, IndexingType *grid, typename std::vector< typename IndexingType::Cell* >& cells) { typedef typename TriMeshType::FaceContainer FaceContainer; typedef IndexingType GridType; typename EdgeMeshType::VertexIterator vi; typename TriMeshType::FaceIterator fi; std::vector v; v.clear(); Intersect(*grid,pl,cells); Segment3 seg; ave_length = 0.0; typename std::vector::iterator ic; typename GridType::Cell fs,ls; for(ic = cells.begin(); ic != cells.end();++ic) { grid->Grid(*ic,fs,ls); typename GridType::Link * lk = fs; while(lk != ls){ typename TriMeshType::FaceType & face = *(lk->Elem()); if(!face.IsS()) { face.SetS(); v.push_back(&face); if(vcg::IntersectionPlaneTriangle(pl,face,seg))// intersezione piano triangolo { face.SetS(); // add to em ave_length+=seg.Length(); vcg::edge::Allocator::AddEdges(em,1); vi = vcg::edge::Allocator::AddVertices(em,2); (*vi).P() = seg.P0(); em.edges.back().V(0) = &(*vi); vi++; (*vi).P() = seg.P1(); em.edges.back().V(1) = &(*vi); } }//endif lk++; }//end while } ave_length/=em.en; typename std::vector::iterator v_i; for(v_i=v.begin(); v_i!=v.end(); ++v_i) (*v_i)->ClearS(); return true; } /** \addtogroup complex */ /*@{*/ /** Basic Function computing the intersection between a trimesh and a plane. It returns an EdgeMesh without needing anything else. Note: This version always returns a segment for each triangle of the mesh which intersects with the plane. In other words there are 2*n vertices where n is the number of segments fo the mesh. You can run vcg::edge::Unify to unify the vertices closer that a given value epsilon. Note that, due to subtraction error during triangle plane intersection, it is not safe to put epsilon to 0. // TODO si dovrebbe considerare la topologia face-face della trimesh per derivare quella della edge mesh.. */ template < typename TriMeshType, typename EdgeMeshType, class ScalarType > bool Intersection(TriMeshType & m, Plane3 pl, EdgeMeshType & em) { typename EdgeMeshType::VertexIterator vi; typename TriMeshType::FaceIterator fi; em.Clear(); Segment3 seg; for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { if(vcg::IntersectionPlaneTriangle(pl,*fi,seg))// intersezione piano triangolo { vcg::edge::Allocator::AddEdges(em,1); vi = vcg::edge::Allocator::AddVertices(em,2); (*vi).P() = seg.P0(); em.edges.back().V(0) = &(*vi); vi++; (*vi).P() = seg.P1(); em.edges.back().V(1) = &(*vi); } }//end for return true; } /** \addtogroup complex */ /*@{*/ /** Compute the intersection between a trimesh and a plane. given a plane return the set of faces that are contained into intersected cells. */ template < typename TriMeshType, class ScalarType, class IndexingType > bool Intersection(Plane3 pl, IndexingType *grid, typename std::vector &v) { typedef typename TriMeshType::FaceContainer FaceContainer; typedef IndexingType GridType; typename TriMeshType::FaceIterator fi; v.clear(); typename std::vector< typename GridType::Cell* > cells; Intersect(*grid,pl,cells); typename std::vector::iterator ic; typename GridType::Cell fs,ls; for(ic = cells.begin(); ic != cells.end();++ic) { grid->Grid(*ic,fs,ls); typename GridType::Link * lk = fs; while(lk != ls){ typename TriMeshType::FaceType & face = *(lk->Elem()); v.push_back(&face); lk++; }//end while }//end for return true; } /** Computes the intersection between a Ray and a Mesh. Returns a 3D Pointset. */ template < typename TriMeshType, class ScalarType> bool IntersectionRayMesh( /* Input Mesh */ TriMeshType * m, /* Ray */ const Line3 & ray, /* Intersect Point */ Point3 & hitPoint) { //typedef typename TriMeshType::FaceContainer FaceContainer; typename TriMeshType::FaceIterator fi; bool hit=false; if(m==0) return false; //TriMeshType::FaceIterator fi; //std::vector::iterator fi; ScalarType bar1,bar2,dist; Point3 p1; Point3 p2; Point3 p3; for(fi = m->face.begin(); fi != m->face.end(); ++fi) { p1=vcg::Point3( (*fi).P(0).X() ,(*fi).P(0).Y(),(*fi).P(0).Z() ); p2=vcg::Point3( (*fi).P(1).X() ,(*fi).P(1).Y(),(*fi).P(1).Z() ); p3=vcg::Point3( (*fi).P(2).X() ,(*fi).P(2).Y(),(*fi).P(2).Z() ); if(Intersection(ray,p1,p2,p3,bar1,bar2,dist)) { hitPoint= p1*(1-bar1-bar2) + p2*bar1 + p3*bar2; hit=true; } } return hit; } /** Compute the intersection between a mesh and a ball. given a mesh return a new mesh made by a copy of all the faces entirely includeded in the ball plus new faces created by refining the ones intersected by the ball border. It works by recursively splitting the triangles that cross the border, as long as their area is greater than a given value tol. If no value is provided, 1/10^5*2*pi*radius is used NOTE: the returned mesh is a triangle soup */ template < typename TriMeshType, class ScalarType> void IntersectionBallMesh( TriMeshType & m, const vcg::Sphere3 &ball, TriMeshType & res, float tol = 0){ typename TriMeshType::VertexIterator v0,v1,v2; typename TriMeshType::FaceIterator fi; std::vector closests; vcg::Point3 witness; std::pair info; if(tol == 0) tol = M_PI * ball.Radius() * ball.Radius() / 10000; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD() && IntersectionSphereTriangle(ball ,(*fi), witness , &info)) closests.push_back(&(*fi)); res.Clear(); SubSet(res,closests); int i =0; while(i(ball ,res.face[i], witness , &info) && !allIn){ if(vcg::DoubleArea(res.face[i]) > tol) { // split the face res.face[i] in four, add the four new faces to the mesh and delete the face res.face[i] v0 = vcg::tri::Allocator::AddVertices(res,3); fi = vcg::tri::Allocator::AddFaces(res,4); v1 = v0; ++v1; v2 = v1; ++v2; (*v0).P() = (res.face[i].P(0) + res.face[i].P(1))*0.5; (*v1).P() = (res.face[i].P(1) + res.face[i].P(2))*0.5; (*v2).P() = (res.face[i].P(2) + res.face[i].P(0))*0.5; (*fi).V(0) = res.face[i].V(0); (*fi).V(1) = &(*v0); (*fi).V(2) = &(*v2); ++fi; (*fi).V(0) = res.face[i].V(1); (*fi).V(1) = &(*v1); (*fi).V(2) = &(*v0); ++fi; (*fi).V(0) = &(*v0); (*fi).V(1) = &(*v1); (*fi).V(2) = &(*v2); ++fi; (*fi).V(0) = &(*v2); (*fi).V(1) = &(*v1); (*fi).V(2) = res.face[i].V(2) ; vcg::tri::Allocator::DeleteFace(res,res.face[i]); } }// there was no intersection with the boundary if(info.first > 0.0) // closest point - radius. If >0 is outside vcg::tri::Allocator::DeleteFace(res,res.face[i]); ++i; } } /*@}*/ } // end namespace vcg #endif