/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2009 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #include #include #include #include #include #include #include #include using namespace vcg; using namespace std; class MyEdge; class MyFace; class MyVertex; struct MyUsedTypes : public UsedTypes< Use ::AsVertexType, Use ::AsEdgeType, Use ::AsFaceType>{}; class MyVertex : public Vertex{}; class MyFace : public Face< MyUsedTypes, face::VertexRef, face::Normal3f, face::BitFlags, face::Mark, face::VFAdj, face::FFAdj > {}; class MyEdge : public Edge< MyUsedTypes, edge::VertexRef, edge::BitFlags>{}; class MyMesh : public tri::TriMesh< vector, vector, vector > {}; class EmEdge; class EmFace; class EmVertex; struct EmUsedTypes : public UsedTypes< Use ::AsVertexType, Use ::AsEdgeType, Use ::AsFaceType>{}; class EmVertex : public Vertex{}; class EmFace : public Face< EmUsedTypes, face::VertexRef, face::BitFlags, face::VFAdj > {}; class EmEdge : public Edge< EmUsedTypes, edge::VertexRef> {}; class EmMesh : public tri::TriMesh< vector, vector, vector > {}; int main( int argc, char **argv ) { MyMesh baseMesh; if(argc < 4 ) { printf("Usage trimesh_voronoisampling mesh sampleNum iterNum\n"); return -1; } int sampleNum = atoi(argv[2]); int iterNum = atoi(argv[3]); bool fixCornerFlag=true; bool uniformEdgeSamplingFlag = true; printf("Reading %s and sampling %i points with %i iteration\n",argv[1],sampleNum,iterNum); int ret= tri::io::ImporterPLY::Open(baseMesh,argv[1]); if(ret!=0) { printf("Unable to open %s for '%s'\n",argv[1],tri::io::ImporterPLY::ErrorMsg(ret)); return -1; } tri::VoronoiProcessingParameter vpp; tri::Clean::RemoveUnreferencedVertex(baseMesh); tri::Allocator::CompactEveryVector(baseMesh); tri::UpdateTopology::VertexFace(baseMesh); tri::SurfaceSampling >::PoissonDiskParam pp; float radius = tri::SurfaceSampling >::ComputePoissonDiskRadius(baseMesh,sampleNum); tri::VoronoiProcessing::PreprocessForVoronoi(baseMesh,radius,vpp); tri::UpdateFlags::FaceBorderFromVF(baseMesh); tri::UpdateFlags::VertexBorderFromFaceBorder(baseMesh); // -- Build a sampling with just corners (Poisson filtered) MyMesh poissonCornerMesh; std::vector sampleVec; tri::TrivialSampler mps(sampleVec); tri::SurfaceSampling >::VertexBorderCorner(baseMesh,mps,math::ToRad(150.f)); tri::BuildMeshFromCoordVector(poissonCornerMesh,sampleVec); tri::io::ExporterPLY::Save(poissonCornerMesh,"cornerMesh.ply"); sampleVec.clear(); MyMesh borderMesh,poissonBorderMesh; if(uniformEdgeSamplingFlag) { } else { if(fixCornerFlag) { tri::SurfaceSampling >::PoissonDiskPruning(mps, poissonCornerMesh, radius, pp); tri::BuildMeshFromCoordVector(poissonCornerMesh,sampleVec); tri::io::ExporterPLY::Save(poissonCornerMesh,"poissonCornerMesh.ply"); // Now save the corner as Fixed Seeds for later... std::vector fixedSeedVec; tri::VoronoiProcessing::SeedToVertexConversion(baseMesh,sampleVec,fixedSeedVec); tri::VoronoiProcessing >::FixVertexVector(baseMesh,fixedSeedVec); vpp.preserveFixedSeed=true; } // -- Build a sampling with points on the border sampleVec.clear(); tri::SurfaceSampling >::VertexBorder(baseMesh,mps); tri::BuildMeshFromCoordVector(borderMesh,sampleVec); tri::io::ExporterPLY::Save(borderMesh,"borderMesh.ply"); // -- and then prune the border sampling with poisson strategy using the precomputed corner vertexes. pp.preGenMesh = &poissonCornerMesh; pp.preGenFlag=true; sampleVec.clear(); tri::SurfaceSampling >::PoissonDiskPruning(mps, borderMesh, radius*0.8f, pp); tri::BuildMeshFromCoordVector(poissonBorderMesh,sampleVec); } tri::io::ExporterPLY::Save(poissonBorderMesh,"PoissonEdgeMesh.ply"); // -- Build the montercarlo sampling of the surface MyMesh MontecarloSurfaceMesh; sampleVec.clear(); tri::SurfaceSampling >::Montecarlo(baseMesh,mps,50000); tri::BuildMeshFromCoordVector(MontecarloSurfaceMesh,sampleVec); tri::io::ExporterPLY::Save(MontecarloSurfaceMesh,"MontecarloSurfaceMesh.ply"); // -- Prune the montecarlo sampling with poisson strategy using the precomputed vertexes on the border. pp.preGenMesh = &poissonBorderMesh; sampleVec.clear(); tri::SurfaceSampling >::PoissonDiskPruning(mps, MontecarloSurfaceMesh, radius, pp); MyMesh PoissonMesh; tri::BuildMeshFromCoordVector(PoissonMesh,sampleVec); tri::io::ExporterPLY::Save(PoissonMesh,"PoissonMesh.ply"); std::vector seedVec; tri::VoronoiProcessing::SeedToVertexConversion(baseMesh,sampleVec,seedVec); // Select all the vertexes on the border to define a constrained domain. // In our case we select the border vertexes to make sure that the seeds on the border // relax themselves remaining on the border for(size_t i=0;i dd; int t0=clock(); // And now, at last, the relaxing procedure! int actualIter = tri::VoronoiProcessing >::VoronoiRelaxing(baseMesh, seedVec, iterNum, dd, vpp); int t1=clock(); MyMesh voroMesh, voroPoly, delaMesh; // Get the result in some pleasant form converting it to a real voronoi diagram. if(tri::VoronoiProcessing::CheckVoronoiTopology(baseMesh,seedVec)) tri::VoronoiProcessing::ConvertVoronoiDiagramToMesh(baseMesh,voroMesh,voroPoly,seedVec, vpp); else printf("WARNING some voronoi region are not disk like; the resulting delaunay triangulation is not manifold.\n"); tri::io::ExporterPLY::Save(baseMesh,"base.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY ); tri::io::ExporterPLY::Save(voroMesh,"voroMesh.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_FLAGS ); tri::io::ExporterPLY::Save(voroPoly,"voroPoly.ply",tri::io::Mask::IOM_VERTCOLOR| tri::io::Mask::IOM_EDGEINDEX ,false); tri::VoronoiProcessing::ConvertDelaunayTriangulationToMesh(baseMesh,delaMesh, seedVec); tri::io::ExporterPLY::Save(delaMesh,"delaMesh.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY ); tri::VoronoiProcessing::RelaxRefineTriangulationSpring(baseMesh,delaMesh,2,10); tri::io::ExporterPLY::Save(delaMesh,"delaMeshRef.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY ); // tri::io::ImporterPLY::Open(baseMesh,argv[1]); // tri::UpdateTopology::VertexFace(baseMesh); // tri::PoissonSampling(baseMesh,pointVec,sampleNum,radius,radiusVariance); // tri::VoronoiProcessing::SeedToVertexConversion(baseMesh,pointVec,seedVec); // tri::IsotropicDistance id(baseMesh,radiusVariance); // tri::VoronoiProcessing >::VoronoiRelaxing(baseMesh, seedVec, iterNum,id,vpp); // tri::VoronoiProcessing >::ConvertVoronoiDiagramToMesh(baseMesh,outMesh,polyMesh,seedVec, id, vpp); // tri::io::ExporterPLY::Save(outMesh,"outW.ply",tri::io::Mask::IOM_VERTCOLOR ); // tri::io::ExporterPLY::Save(polyMesh,"polyW.ply",tri::io::Mask::IOM_VERTCOLOR | tri::io::Mask::IOM_EDGEINDEX,false); // tri::io::ExporterDXF::Save(polyMesh,"outW.dxf"); printf("Completed! %i (%i) iterations in %f sec for %lu seeds \n",actualIter, iterNum,float(t1-t0)/CLOCKS_PER_SEC,seedVec.size()); return 0; }