/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.7 2004/05/04 02:46:23 ganovelli added function Dist Revision 1.5 2004/04/05 11:51:22 cignoni wrong define FACE_N instead of FACE_FN Revision 1.4 2004/03/29 08:37:09 cignoni missing include Revision 1.3 2004/03/10 00:52:38 cignoni Moved geometric stuff to the space/triangle class Revision 1.2 2004/03/03 16:08:38 cignoni First working version Revision 1.1 2004/02/13 00:44:45 cignoni First commit... ****************************************************************************/ #ifndef FACE_TYPE #pragma error message("\nYou should never directly include this file\_n") #else #include #include #include #include #include #include namespace vcg { /** \ingroup face @name Face Class Face. This is the base class for definition of a face of the mesh. @param FVTYPE (Templete Parameter) Specifies the vertex class type. */ template > class FACE_TYPE { public: /// The base type of the face typedef FACE_TYPE BaseFaceType; /// The vertex type typedef FVTYPE VertexType; /// The type of the scalar field of the vertex coordinate typedef typename VertexType::ScalarType ScalarType; /// The type of the the vertex coordinate typedef Point3< ScalarType > CoordType; typedef Point3< ScalarType > NormalType; typedef typename FVTYPE::FaceType FaceFromVertType; /// The bounding box type typedef Box3 BoxType; /// Default Empty Costructor inline FACE_TYPE(){} /// This are the _flags of face, the default value is 0 int _flags; /***********************************************/ /** @name Vertex Pointer blah blah **/ //@{ protected: /// Vector of vertex pointer incident in the face VertexType *v[3]; public: /** Return the pointer to the j-th vertex of the face. @param j Index of the face vertex. */ inline FVTYPE * & V( const int j ) { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); assert(j >= 0); assert(j < 3); return v[j]; } inline const FVTYPE * const & V( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<3); return v[j]; } inline const FVTYPE * const & cV( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<3); return v[j]; } // Shortcut per accedere ai punti delle facce inline CoordType & P( const int j ) { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); assert(j>=0); assert(j<3); return v[j]->P(); } inline const CoordType & P( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<3); return v[j]->cP(); } inline const CoordType & cP( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<3); return v[j]->cP(); } /** Return the pointer to the ((j+1)%3)-th vertex of the face. @param j Index of the face vertex. */ inline FVTYPE * & V0( const int j ) { return V(j);} inline FVTYPE * & V1( const int j ) { return V((j+1)%3);} inline FVTYPE * & V2( const int j ) { return V((j+2)%3);} inline const FVTYPE * const & V0( const int j ) const { return V(j);} inline const FVTYPE * const & V1( const int j ) const { return V((j+1)%3);} inline const FVTYPE * const & V2( const int j ) const { return V((j+2)%3);} inline const FVTYPE * const & cV0( const int j ) const { return cV(j);} inline const FVTYPE * const & cV1( const int j ) const { return cV((j+1)%3);} inline const FVTYPE * const & cV2( const int j ) const { return cV((j+2)%3);} /// Shortcut per accedere ai punti delle facce inline CoordType & P0( const int j ) { return V(j)->P();} inline CoordType & P1( const int j ) { return V((j+1)%3)->P();} inline CoordType & P2( const int j ) { return V((j+2)%3)->P();} inline const CoordType & P0( const int j ) const { return V(j)->P();} inline const CoordType & P1( const int j ) const { return V((j+1)%3)->P();} inline const CoordType & P2( const int j ) const { return V((j+2)%3)->P();} inline const CoordType & cP0( const int j ) const { return cV(j)->P();} inline const CoordType & cP1( const int j ) const { return cV((j+1)%3)->P();} inline const CoordType & cP2( const int j ) const { return cV((j+2)%3)->P();} inline FVTYPE * & UberV( const int j ) { assert(j>=0); assert(j<3); return v[j]; } inline const FVTYPE * const & UberV( const int j ) const { assert(j>=0); assert(j<3); return v[j]; } //@} /***********************************************/ /** @name Normal blah blah **/ //@{ #ifdef __VCGLIB_FACE_FN /// This vector indicates the normal of the face (defines if FACE_N is defined) protected: CoordType _n; public: #endif /// Return the reference of the normal to the face (if __VCGLIB_FACE_FN is defined). inline CoordType & N() { #ifdef __VCGLIB_FACE_FN return _n; #else assert(0); return *(CoordType *)0; #endif } /// Return the reference of the normal to the face (if __VCGLIB_FACE_FN is defined). inline const CoordType & N() const { #ifdef __VCGLIB_FACE_FN return _n; #else return *(CoordType *)0; #endif } /// Return the reference of the normal to the face (if __VCGLIB_FACE_FN is defined). inline const CoordType cN() const { #ifdef __VCGLIB_FACE_FN return _n; #else return *(CoordType *)0; #endif } /// Calculate the normal to the face, the value is store in the field _n of the face void ComputeNormal() { #ifdef __VCGLIB_FACE_FN _n = vcg::Normal(*this); #else assert(0); #endif } void ComputeNormalizedNormal() { #ifdef __VCGLIB_FACE_FN _n = vcg::NormalizedNormal(V(0)->cP(), V(1)->cP(), V(2)->cP()); #else assert(0); #endif } /// Return the value of the face normal as it correspond to the current geometry. /// it is always computed and never stored. const CoordType Normal() const { return vcg::Normal(*this); } #ifdef __VCGLIB_FACE_WN /// This vector indicates per wedge normal CoordType _wn[3]; #endif public: CoordType & WN(const int i) { #ifdef __VCGLIB_FACE_WN return _wn[i]; #else assert(0); return *(CoordType *)(&_flags); #endif } const CoordType & WN(const int i) const { #ifdef __VCGLIB_FACE_WN return _wn[i]; #else return CoordType(); #endif } //@} /***********************************************/ /** @name Quality blah blah **/ //@{ #ifdef __VCGLIB_FACE_FQ protected: float _q; #endif public: float & Q() { #ifdef __VCGLIB_FACE_FQ return _q; #else assert(0); return *(float*)(&_flags); #endif } const float & Q() const { #ifdef __VCGLIB_FACE_FQ return _q; #else assert(0); return *(float*)(&_flags); #endif } //@} /***********************************************/ /** @name Texture blah blah **/ //@{ // Per Wedge Texture Coords protected: #ifdef __VCGLIB_FACE_WT TCTYPE _wt[3]; #endif public: TCTYPE & WT(const int i) { #ifdef __VCGLIB_FACE_WT return _wt[i]; #else assert(0); return *(TCTYPE*)(&_flags); #endif } const TCTYPE & WT(const int i) const { #ifdef __VCGLIB_FACE_WT return _wt[i]; #else assert(0); return *(TCTYPE*)(&_flags); #endif } //@} /***********************************************/ /** @name Colors blah blah **/ //@{ protected: #ifdef __VCGLIB_FACE_FC Color4b _c; #endif public: Color4b & C() { #ifdef __VCGLIB_FACE_FC return _c; #else assert(0); return *(Color4b*)(&_flags); #endif } const Color4b C() const { #ifdef __VCGLIB_FACE_FC return _c; #else return Color4b(Color4b::White); #endif } protected: #ifdef __VCGLIB_FACE_WC Color4b _wc[3]; #endif public: Color4b & WC(const int i) { #ifdef __VCGLIB_FACE_WC return _wc[i]; #else assert(0); return *(Color4b*)(&_flags); #endif } const Color4b WC(const int i) const { #ifdef __VCGLIB_FACE_WC return _wc[i]; #else assert(0); return Color4b(Color4b::White); #endif } //@} /***********************************************/ /** @name Adjacency blah blah **/ //@{ #if (defined(__VCGLIB_FACE_AF) && defined(__VCGLIB_FACE_AS)) #error Error: You cannot specify face-to-face and shared topology together #endif #if (defined(__VCGLIB_FACE_AV) && defined(__VCGLIB_FACE_AS)) #error Error: You cannot specify vertex-face and shared topology together #endif protected: #if defined(__VCGLIB_FACE_AF) /// Vector of face pointer, it's used to indicate the adjacency relations (defines if FACE_A is defined) FACE_TYPE *_ffp[3]; // Facce adiacenti /// Index of the face in the arrival face char _ffi[4]; #endif #ifdef __VCGLIB_FACE_AV ///Vettore di puntatori a faccia, utilizzato per indicare le adiacenze vertice faccia FACE_TYPE *_fvp[3]; char _fvi[3]; #endif #ifdef __VCGLIB_FACE_AS ///Vettore di puntatori a faccia, utilizzato per indicare le adiacenze vertice faccia FACE_TYPE *fs[3]; char zs[3]; #endif public: /** Return the pointer to the j-th adjacent face. @param j Index of the edge. */ inline FACE_TYPE * & FFp( const int j ) { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); assert(j>=0); assert(j<3); #if defined(__VCGLIB_FACE_AF) return _ffp[j]; #elif defined(__VCGLIB_FACE_AS) return fs[j]; #else assert(0); static FACE_TYPE *dum=0; return dum; #endif } inline const FACE_TYPE * const & FFp( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<3); #if defined(__VCGLIB_FACE_AF) return _ffp[j]; #elif defined(__VCGLIB_FACE_AS) return fs[j]; #else assert(0); return (FACE_TYPE *)this; #endif } inline FACE_TYPE * & F1( const int j ) { return F((j+1)%3);} inline FACE_TYPE * & F2( const int j ) { return F((j+2)%3);} inline const FACE_TYPE * const& F1( const int j ) const { return F((j+1)%3);} inline const FACE_TYPE * const& F2( const int j ) const { return F((j+2)%3);} /** Return the pointer to the j-th adjacent face. @param j Index of the edge. */ inline FACE_TYPE * & UberF( const int j ) { assert(j>=0); assert(j<3); #if defined(__VCGLIB_FACE_AF) return _ffp[j]; #elif defined(__VCGLIB_FACE_AS) return fs[j]; #else assert(0); // if you stop here you are probably trying to use FF topology in a face without it return *((FACE_TYPE **)(_flags)); #endif } inline const FACE_TYPE * const & UberF( const int j ) const { assert(j>=0); assert(j<3); #if defined(__VCGLIB_FACE_AF) return _ffp[j]; #elif defined(__VCGLIB_FACE_AS) return fs[j]; #else assert(0); // if you stop here you are probably trying to use FF topology in a face without it return *((FACE_TYPE **)(_flags)); #endif } inline FACE_TYPE * & FVp( const int j ) { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); assert(j>=0); assert(j<3); #ifdef __VCGLIB_FACE_AV return _fvp[j]; #elif defined(__VCGLIB_FACE_AS) return fs[j]; #else assert(0); // you are probably trying to use VF topology in a vertex without it return *((FACE_TYPE **)(_flags)); #endif } inline const FACE_TYPE * const & FVp( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<3); #ifdef __VCGLIB_FACE_AV return _fvp[j]; #elif defined(__VCGLIB_FACE_AS) return fs[j]; #else assert(0); return (FACE_TYPE *)this; #endif } /** Return the index that the face have in the j-th adjacent face. @param j Index of the edge. */ inline char & FFi( const int j ) { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); assert(j>=0); assert(j<3); #if defined(__VCGLIB_FACE_AF) return _ffi[j]; #elif defined(__VCGLIB_FACE_AS) return zs[j]; #else assert(0); return *(char *)&_flags; // tanto per farlo compilare... #endif } inline const char & FFi( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<3); #if defined(__VCGLIB_FACE_AF) return _ffi[j]; #elif defined(__VCGLIB_FACE_AS) return zs[j]; #else assert(0); return *(char *)&_flags; #endif } /** Return the index that the face have in the j-th adjacent face. @param j Index of the edge. */ inline char & UberZ( const int j ) { assert(j>=0); assert(j<3); #if defined(__VCGLIB_FACE_AF) return _ffi[j]; #elif defined(__VCGLIB_FACE_AS) return zs[j]; #else assert(0); return *(char *)&_flags; #endif } inline const char & UberZ( const int j ) const { assert(j>=0); assert(j<3); #if defined(__VCGLIB_FACE_AF) return _ffi[j]; #elif defined(__VCGLIB_FACE_AS) return zs[j]; #else assert(0); return *(char *)&_flags; #endif } inline char & FVi( const int j ) { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); assert(j>=0); assert(j<3); #ifdef __VCGLIB_FACE_AV return _fvi[j]; #elif defined(__VCGLIB_FACE_AS) return zs[j]; #else assert(0); return *(char *)&_flags; #endif } inline const char & FVi( const int j ) const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert(j>=0); assert(j<3); #ifdef __VCGLIB_FACE_AV return _fvi[j]; #elif defined(__VCGLIB_FACE_AS) return zs[j]; #else assert(0); return *(char *)&_flags; #endif } //@} /***********************************************/ /** @name Mark blah blah **/ //@{ #ifdef __VCGLIB_FACE_FM /// Incremental mark (defines if FACE_I is defined) int imark; inline int & IMark() { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); assert( (_flags & NOTWRITE) == 0 ); return imark; } inline const int & IMark() const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); return imark; } #endif // Mark /// Initialize the imark system of the face inline void InitIMark() { #ifdef __VCGLIB_FACE_FM imark = 0; #endif } //@} /***********************************************/ /** @name Flags blah blah **/ //@{ enum { // This bit indicate that the face is deleted from the mesh DELETED = 0x00000001, // cancellato // This bit indicate that the face of the mesh is not readable NOTREAD = 0x00000002, // non leggibile (ma forse modificabile) // This bit indicate that the face is not modifiable NOTWRITE = 0x00000004, // non modificabile (ma forse leggibile) // This bit indicate that the face is modified SELECTED = 0x00000020, // Selection _flags // Border _flags, it is assumed that BORDERi = BORDER0<>1; return true; } assert(0); return false; } void ClearFlags() {_flags=0;} /// Return the _flags. inline int & Flags () { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); return _flags; } inline const int & Flags () const { assert( (_flags & DELETED) == 0 ); assert( (_flags & NOTREAD) == 0 ); return _flags; } /// Ritorna il _flags senza effettuare alcun controllo sui relativi bit inline int & UberFlags() { return _flags; } inline const int UberFlags() const { return _flags; } /// This function checks if the face is deleted bool IsD() const {return (_flags & DELETED) != 0;} /// This function mark the face as deleted void SetD() {_flags |=DELETED;} /// This function mark the face as not deleted void ClearD() {_flags &= (~DELETED);} /// This function checks if the face is deleted bool IsDeleted() const {return IsD();} /// This function checks if the face is readable bool IsR() const {return (_flags & NOTREAD) == 0;} /// This function marks the face as readable void SetR() {_flags &= (~NOTREAD);} /// This function marks the face as not readable void ClearR() {_flags |=NOTREAD;} /// This function checks if the face is readable bool IsW() const {return (_flags & NOTWRITE)== 0;} /// This function marks the vertex as not writable void SetW() {_flags &=(~NOTWRITE);} /// This function marks the face as not writable void ClearW() {_flags |=NOTWRITE;} /// This funcion checks whether the face is both readable and modifiable bool IsRW() const {return (_flags & (NOTREAD | NOTWRITE)) == 0;} /// This function checks if the face is selected bool IsS() const {return (_flags & SELECTED) != 0;} /// This function select the face void SetS() {_flags |=SELECTED;} /// This funcion execute the inverse operation of SetS() void ClearS() {_flags &= (~SELECTED);} /// This function checks if the face is selected bool IsB(int i) const {return (_flags & (BORDER0<P() ); bb.Add( v[1]->P() ); bb.Add( v[2]->P() ); } /***********************************************/ /** @name Reflection Functions Static functions that give information about the current vertex type. Reflection is a mechanism making it possible to investigate yourself. Reflection is used to investigate format of objects at runtime, invoke methods and access fields of these objects. Here we provide static const functions that are resolved at compile time and they give information about the data (normal, color etc.) supported by the current vertex type. **/ //@{ static bool HasFaceNormal() { #ifdef __VCGLIB_FACE_FN return true; #else return false; #endif } static bool HasFaceQuality() { #ifdef __VCGLIB_FACE_FQ return true; #else return false; #endif } static bool HasFaceColor() { #ifdef __VCGLIB_FACE_FC return true; #else return false; #endif } static bool HasFFAdjacency() { #if (defined(__VCGLIB_FACE_AF) || defined(__VCGLIB_FACE_AS)) return true; #else return false; #endif } static bool HasVFAdjacency() { #if (defined(__VCGLIB_FACE_AV) || defined(__VCGLIB_FACE_AS)) return true; #else return false; #endif } static bool HasSharedAdjacency() { #if defined(__VCGLIB_FACE_AS) return true; #else return false; #endif } static bool HasFaceMark() { #ifdef __VCGLIB_FACE_FC return true; #else return false; #endif } static bool HasWedgeColor() { #ifdef __VCGLIB_FACE_WC return true; #else return false; #endif } static bool HasWedgeTexture() { #ifdef __VCGLIB_FACE_WT return true; #else return false; #endif } static bool HasWedgeNormal() { #ifdef __VCGLIB_FACE_WN return true; #else return false; #endif } //@} /// operator to compare two faces inline bool operator == ( const FACE_TYPE & f ) const { for(int i=0; i<3; ++i) if( (V(i) != f.V(0)) && (V(i) != f.V(1)) && (V(i) != f.V(2)) ) return false; return true; } /** Calcola i coefficienti della combinazione convessa. @param bq Punto appartenente alla faccia @param a Valore di ritorno per il vertice V(0) @param b Valore di ritorno per il vertice V(1) @param _c Valore di ritorno per il vertice V(2) @return true se bq appartiene alla faccia, false altrimenti */ bool InterpolationParameters(const CoordType & bq, ScalarType &a, ScalarType &b, ScalarType &_c ) const { const ScalarType EPSILON = ScalarType(0.000001); #define x1 (cV(0)->P()[0]) #define y1 (cV(0)->P()[1]) #define z1 (cV(0)->P()[2]) #define x2 (cV(1)->P()[0]) #define y2 (cV(1)->P()[1]) #define z2 (cV(1)->P()[2]) #define x3 (cV(2)->P()[0]) #define y3 (cV(2)->P()[1]) #define z3 (cV(2)->P()[2]) #define px (bq[0]) #define py (bq[1]) #define pz (bq[2]) ScalarType t1 = px*y2; ScalarType t2 = px*y3; ScalarType t3 = py*x2; ScalarType t4 = py*x3; ScalarType t5 = x2*y3; ScalarType t6 = x3*y2; ScalarType t8 = x1*y2; ScalarType t9 = x1*y3; ScalarType t10 = y1*x2; ScalarType t11 = y1*x3; ScalarType t13 = t8-t9-t10+t11+t5-t6; if(fabs(t13)>=EPSILON) { ScalarType t15 = px*y1; ScalarType t16 = py*x1; a = (t1 -t2-t3 +t4+t5-t6 )/t13; b = -(t15-t2-t16+t4+t9-t11)/t13; _c = (t15-t1-t16+t3+t8-t10)/t13; return true; } t1 = px*z2; t2 = px*z3; t3 = pz*x2; t4 = pz*x3; t5 = x2*z3; t6 = x3*z2; t8 = x1*z2; t9 = x1*z3; t10 = z1*x2; t11 = z1*x3; t13 = t8-t9-t10+t11+t5-t6; if(fabs(t13)>=EPSILON) { ScalarType t15 = px*z1; ScalarType t16 = pz*x1; a = (t1 -t2-t3 +t4+t5-t6 )/t13; b = -(t15-t2-t16+t4+t9-t11)/t13; _c = (t15-t1-t16+t3+t8-t10)/t13; return true; } t1 = pz*y2; t2 = pz*y3; t3 = py*z2; t4 = py*z3; t5 = z2*y3; t6 = z3*y2; t8 = z1*y2; t9 = z1*y3; t10 = y1*z2; t11 = y1*z3; t13 = t8-t9-t10+t11+t5-t6; if(fabs(t13)>=EPSILON) { ScalarType t15 = pz*y1; ScalarType t16 = py*z1; a = (t1 -t2-t3 +t4+t5-t6 )/t13; b = -(t15-t2-t16+t4+t9-t11)/t13; _c = (t15-t1-t16+t3+t8-t10)/t13; return true; } #undef x1 #undef y1 #undef z1 #undef x2 #undef y2 #undef z2 #undef x3 #undef y3 #undef z3 #undef px #undef py #undef pz return false; } /// Return the DOUBLE of the area of the face ScalarType Area() const { return Norm( (V(1)->P() - V(0)->P()) ^ (V(2)->P() - V(0)->P()) ); } CoordType Barycenter() const { return (V(0)->P()+V(1)->P()+V(2)->P())/ScalarType(3.0); } ScalarType Perimeter() const { return Distance(V(0)->P(),V(1)->P())+ Distance(V(1)->P(),V(2)->P())+ Distance(V(2)->P(),V(0)->P()); } /// Return the _q of the face, the return value is in [0,sqrt(3)/2] = [0 - 0.866.. ] ScalarType QualityFace( ) const { return Quality(V(0)->P(), V(1)->P(), V(2)->P()); /* CoordType d10 = V(1)->P() - V(0)->P(); CoordType d20 = V(2)->P() - V(0)->P(); CoordType d12 = V(1)->P() - V(2)->P(); CoordType x = d10^d20; ScalarType a = Norm( x ); // doppio dell' Area ScalarType b; b = Norm2( d10 ); ScalarType t = b; t = Norm2( d20 ); if( b plane; #endif void ComputeRT() { #ifdef __VCGLIB_FACE_RT // Primo calcolo degli edges edge[0] = V(1)->P(); edge[0] -= V(0)->P(); edge[1] = V(2)->P(); edge[1] -= V(1)->P(); edge[2] = V(0)->P(); edge[2] -= V(2)->P(); // Calcolo di plane plane.SetDirection(edge[0]^edge[1]); plane.SetOffset(plane.Direction() * V(0)->P()); plane.Normalize(); // Calcolo migliore proiezione ScalarType nx = math::Abs(plane.Direction()[0]); ScalarType ny = math::Abs(plane.Direction()[1]); ScalarType nz = math::Abs(plane.Direction()[2]); ScalarType d; if(nx>ny && nx>nz) { _flags |= NORMX; d = 1/plane.Direction()[0]; } else if(ny>nz) { _flags |= NORMY; d = 1/plane.Direction()[1]; } else { _flags |= NORMZ; d = 1/plane.Direction()[2]; } // Scalatura spigoli edge[0] *= d; edge[1] *= d; edge[2] *= d; #endif } /* Point face distance trova il punto

sulla faccia piu' vicino a , con possibilità di rejection veloce su se la distanza trovata è maggiore di Commenti del 12/11/02 Funziona solo se la faccia e di quelle di tipo E (con edge e piano per faccia gia' calcolati) algoritmo: 1) si calcola la proiezione

di q sul piano della faccia 2) se la distanza punto piano e' > rejdist ritorna 3) si lavora sul piano migliore e si cerca di capire se il punto sta dentro il triangolo: a) prodotto vettore tra edge triangolo (v[i+1]-v[i]) e (p-v[i]) b) se il risultato e' negativo (gira in senso orario) allora il punto sta fuori da quella parte e si fa la distanza punto segmento. c) se il risultato sempre positivo allora sta dentro il triangolo 4) e si restituisce la distanza punto /piano gia` calcolata Note sulla robustezza: il calcolo del prodotto vettore e` la cosa piu` delicata: possibili fallimenti quando a^b ~= 0 1) doveva essere <= 0 e viene positivo (q era fuori o sulla linea dell'edge) allora capita che si faccia la distanza punto piano anziche` la distanza punto seg 2) doveva essere > 0 e viene <=0 (q era dentro il triangolo) */ bool Dist( const Point3 & q, ScalarType & dist, Point3 & p ) { #ifdef __VCGLIB_FACE_RT //const ScalarType EPSILON = ScalarType( 0.000001); const ScalarType EPSILON = 0.00000001; ScalarType b,b0,b1,b2; // Calcolo distanza punto piano ScalarType d = Distance( plane, q ); if( d>dist || d<-dist ) // Risultato peggiore: niente di fatto return false; // Calcolo del punto sul piano // NOTA: aggiunto un '-d' in fondo Paolo C. Point3 t = plane.Direction(); t[0] *= -d; t[1] *= -d; t[2] *= -d; p = q; p += t; #define PP(i) (v[i]->cP()) #define E(i) (edge[i]) switch( _flags & (NORMX|NORMY|NORMZ) ) { case NORMX: b0 = E(1)[1]*(p[2] - PP(1)[2]) - E(1)[2]*(p[1] - PP(1)[1]); if(b0<=0) { b0 = PSDist(q,V(1)->cP(),V(2)->cP(),p); if(dist>b0) { dist = b0; return true; } else return false; } b1 = E(2)[1]*(p[2] - PP(2)[2]) - E(2)[2]*(p[1] - PP(2)[1]); if(b1<=0) { b1 = PSDist(q,V(2)->cP(),V(0)->cP(),p); if(dist>b1) { dist = b1; return true; } else return false; } b2 = E(0)[1]*(p[2] - PP(0)[2]) - E(0)[2]*(p[1] - PP(0)[1]); if(b2<=0) { b2 = PSDist(q,V(0)->cP(),V(1)->cP(),p); if(dist>b2) { dist = b2; return true; } else return false; } // sono tutti e tre > 0 quindi dovrebbe essere dentro; // per sicurezza se il piu' piccolo dei tre e' < epsilon (scalato rispetto all'area della faccia // per renderlo dimension independent.) allora si usa ancora la distanza punto // segmento che e' piu robusta della punto piano, e si fa dalla parte a cui siamo piu' // vicini (come prodotto vettore) // Nota: si potrebbe rendere un pochino piu' veloce sostituendo Area() // con il prodotto vettore dei due edge in 2d lungo il piano migliore. if( (b=min(b0,min(b1,b2))) < EPSILON*Area()) { ScalarType bt; if(b==b0) bt = PSDist(q,V(1)->cP(),V(2)->cP(),p); else if(b==b1) bt = PSDist(q,V(2)->cP(),V(0)->cP(),p); else if(b==b2) bt = PSDist(q,V(0)->cP(),V(1)->cP(),p); //printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt); if(dist>bt) { dist = bt; return true; } else return false; } break; case NORMY: b0 = E(1)[2]*(p[0] - PP(1)[0]) - E(1)[0]*(p[2] - PP(1)[2]); if(b0<=0) { b0 = PSDist(q,V(1)->cP(),V(2)->cP(),p); if(dist>b0) { dist = b0; return true; } else return false; } b1 = E(2)[2]*(p[0] - PP(2)[0]) - E(2)[0]*(p[2] - PP(2)[2]); if(b1<=0) { b1 = PSDist(q,V(2)->cP(),V(0)->cP(),p); if(dist>b1) { dist = b1; return true; } else return false; } b2 = E(0)[2]*(p[0] - PP(0)[0]) - E(0)[0]*(p[2] - PP(0)[2]); if(b2<=0) { b2 = PSDist(q,V(0)->cP(),V(1)->cP(),p); if(dist>b2) { dist = b2; return true; } else return false; } if( (b=min(b0,min(b1,b2))) < EPSILON*Area()) { ScalarType bt; if(b==b0) bt = PSDist(q,V(1)->cP(),V(2)->cP(),p); else if(b==b1) bt = PSDist(q,V(2)->cP(),V(0)->cP(),p); else if(b==b2) bt = PSDist(q,V(0)->cP(),V(1)->cP(),p); //printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt); if(dist>bt) { dist = bt; return true; } else return false; } break; case NORMZ: b0 = E(1)[0]*(p[1] - PP(1)[1]) - E(1)[1]*(p[0] - PP(1)[0]); if(b0<=0) { b0 = PSDist(q,V(1)->cP(),V(2)->cP(),p); if(dist>b0) { dist = b0; return true; } else return false; } b1 = E(2)[0]*(p[1] - PP(2)[1]) - E(2)[1]*(p[0] - PP(2)[0]); if(b1<=0) { b1 = PSDist(q,V(2)->cP(),V(0)->cP(),p); if(dist>b1) { dist = b1; return true; } else return false; } b2 = E(0)[0]*(p[1] - PP(0)[1]) - E(0)[1]*(p[0] - PP(0)[0]); if(b2<=0) { b2 = PSDist(q,V(0)->cP(),V(1)->cP(),p); if(dist>b2) { dist = b2; return true; } else return false; } if( (b=min(b0,min(b1,b2))) < EPSILON*Area()) { ScalarType bt; if(b==b0) bt = PSDist(q,V(1)->cP(),V(2)->cP(),p); else if(b==b1) bt = PSDist(q,V(2)->cP(),V(0)->cP(),p); else if(b==b2) bt = PSDist(q,V(0)->cP(),V(1)->cP(),p); //printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt); if(dist>bt) { dist = bt; return true; } else return false; } break; } #undef E #undef PP dist = ScalarType(fabs(d)); //dist = Distance(p,q); #endif return true; } /// return the index [0..2] of a vertex in a face inline int VertexIndex( const FVTYPE * w ) const { if( v[0]==w ) return 0; else if( v[1]==w ) return 1; else if( v[2]==w ) return 2; else return -1; } }; //end Class } // end namespace #endif