/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #include #ifndef __VCG_HEDGE_ #define __VCG_HEDGE_ namespace vcg { /*------------------------------------------------------------------*/ /* The base class of all the recusive definition chain. It is just a container of the typenames of the various simplexes. These typenames must be known form all the derived classes. */ template class HEdgeTypeHolder: public UserTypes{ public: template < class LeftV> void ImportData(const LeftV & /* left */ ) { } static void Name(std::vector & /*name*/){} }; /* The base class form which we start to add our components. it has the empty definition for all the standard members (coords, color flags) Note: in order to avoid both virtual classes and ambiguous definitions all the subsequent overrides must be done in a sequence of derivation. In other words we cannot derive and add in a single derivation step (with multiple ancestor), both the real (non-empty) normal and color but we have to build the type a step a time (deriving from a single ancestor at a time). */ template class HEdgeBase: public hedge::EmptyHEdgeData< hedge::EmptyBitFlags< HEdgeTypeHolder < UserTypes> > > { }; /* The Real Big Edge class; The class __VertexArityMax__ is the one that is the Last to be derived, and therefore is the only one to know the real members (after the many overrides) so all the functions with common behaviour using the members defined in the various Empty/nonEmpty component classes MUST be defined here. I.e. IsD() that uses the overridden Flags() member must be defined here. */ template class A, template class B, template class C, template class D, template class E, template class F, template class G, template class H, template class I, template class J, template class K> class HEdgeArityMax: public K, A, B, C, D, E, F, G, H, I, J> > { // ----- Flags stuff ----- public: enum { DELETED = 0x0001, // This bit indicate that the edge is deleted from the mesh NOTREAD = 0x0002, // This bit indicate that the edge of the mesh is not readable NOTWRITE = 0x0004, // This bit indicate that the edge is not modifiable MODIFIED = 0x0008, // This bit indicate that the edge is modified VISITED = 0x0010, // This bit can be used to mark the visited edge SELECTED = 0x0020, // This bit can be used to select BORDER = 0x0100, // Border Flag USER0 = 0x0200 // First user bit }; inline int & UberFlags () { return this->Flags(); } inline int UberFlags() const { return this->Flags(); } bool IsD() const {return (this->Flags() & DELETED) != 0;} /// checks if the vertex is deleted bool IsR() const {return (this->Flags() & NOTREAD) == 0;} /// checks if the vertex is readable bool IsW() const {return (this->Flags() & NOTWRITE)== 0;}/// checks if the vertex is modifiable bool IsRW() const {return (this->Flags() & (NOTREAD | NOTWRITE)) == 0;}/// This funcion checks whether the vertex is both readable and modifiable bool IsS() const {return (this->Flags() & SELECTED) != 0;}/// checks if the vertex is Selected bool IsB() const {return (this->Flags() & BORDER) != 0;}/// checks if the vertex is a border one bool IsV() const {return (this->Flags() & VISITED) != 0;}/// checks if the vertex Has been visited /** Set the flag value @param flagp Valore da inserire nel flagsimplex */ void SetFlags(int flagp) {this->Flags()=flagp;} /** Set the flag value @param flagp Valore da inserire nel flag */ void ClearFlags() {this->Flags()=0;} void SetD() {this->Flags() |=DELETED;}/// deletes the edge from the mesh void ClearD() {this->Flags() &=(~DELETED);}/// un-delete a edge void SetR() {this->Flags() &=(~NOTREAD);}/// marks the edge as readable void ClearR() {this->Flags() |=NOTREAD;}/// marks the edge as not readable void ClearW() {this->Flags() |=NOTWRITE;}/// marks the edge as writable void SetW() {this->Flags() &=(~NOTWRITE);}/// marks the edge as not writable void SetS() {this->Flags() |=SELECTED;}/// select the edge void ClearS() {this->Flags() &= ~SELECTED;}/// Un-select a edge void SetB() {this->Flags() |=BORDER;} void ClearB() {this->Flags() &=~BORDER;} void SetV() {this->Flags() |=VISITED;} void ClearV() {this->Flags() &=~VISITED;} /// Return the first bit that is not still used static int &FirstUnusedBitFlag() { static int b =USER0; return b; } /// Allocate a bit among the flags that can be used by user. It updates the FirstUnusedBitFlag. static inline int NewBitFlag() { int bitForTheUser = FirstUnusedBitFlag(); FirstUnusedBitFlag()=FirstUnusedBitFlag()<<1; return bitForTheUser; } /// De-allocate a pre allocated bit. It updates the FirstUnusedBitFlag. // Note you must deallocate bit in the inverse order of the allocation (as in a stack) static inline bool DeleteBitFlag(int bitval) { if(FirstUnusedBitFlag()>>1==bitval) { FirstUnusedBitFlag() = FirstUnusedBitFlag()>>1; return true; } assert(0); return false; } /// This function checks if the given user bit is true bool IsUserBit(int userBit){return (this->Flags() & userBit) != 0;} /// This function set the given user bit void SetUserBit(int userBit){this->Flags() |=userBit;} /// This function clear the given user bit void ClearUserBit(int userBit){this->Flags() &= (~userBit);} template void GetBBox( BoxType & bb ) const { bb.SetNull(); bb.Add(this->cP(0)); bb.Add(this->cP(1)); } }; /* These are the three main classes that are used by the library user to define its own edges. The user MUST specify the names of all the type involved in a generic complex. so for example when defining a vertex of a trimesh you must know the name of the type of the edge and of the face. Typical usage example: A vertex with coords, flags and normal for use in a standard trimesh: class VertexNf : public VertexSimp2< VertexNf, EdgeProto, FaceProto, vert::Coord3d, vert::Flag, vert::Normal3f > {}; A vertex with coords, and normal for use in a tetrahedral mesh AND in a standard trimesh: class TetraVertex : public VertexSimp3< TetraVertex, EdgeProto, FaceProto, TetraProto, vert::Coord3d, vert::Normal3f > {}; A summary of the available vertex attributes (see component.h for more details): Coord3f, Coord3d, Normal3s, Normal3f, Normal3d Mark //a int component (incremental mark) BitFlags TexCoord2s, TexCoord2f, TexCoord2d Color4b Qualitys, Qualityf, Qualityd VFAdj //topology (vertex->face adjacency) */ template class A = DefaultDeriver, template class B = DefaultDeriver, template class C = DefaultDeriver, template class D = DefaultDeriver, template class E = DefaultDeriver, template class F = DefaultDeriver, template class G = DefaultDeriver, template class H = DefaultDeriver, template class I = DefaultDeriver, template class J = DefaultDeriver, template class K = DefaultDeriver> class HEdge: public HEdgeArityMax { public: typedef AllTypes::AHEdgeType IAm; typedef UserTypes TypesPool;}; }// end namespace #endif