/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef _AUTOALIGN_4PCS_H_ #define _AUTOALIGN_4PCS_H_ /** implementation of the 4PCS method from the paper: "4-Points Congruent Sets for Robust Pairwise Surface Registration" D.Aiger, N.Mitra D.Cohen-Or, SIGGRAPH 2008 ps: the name of the variables are out of vcg standard but like the one used in the paper pseudocode. */ #include #include #include #include #include #include namespace vcg{ namespace tri{ template class FourPCS { public: /* mesh only for using spatial indexing functions (to remove) */ class PVertex; // dummy prototype never used class PFace; class PUsedTypes: public vcg::UsedTypes < vcg::Use::template AsVertexType, vcg::Use::template AsFaceType >{}; class PVertex : public vcg::Vertex< PUsedTypes,vcg::vertex::BitFlags,vcg::vertex::Coord3f,vcg::vertex::Mark>{}; class PFace : public vcg::Face< PUsedTypes> {}; class PMesh : public vcg::tri::TriMesh< std::vector, std::vector > {}; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::CoordType CoordType; typedef typename vcg::Matrix44 Matrix44x; typedef typename vcg::Box3 Box3x; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexType VertexType; typedef vcg::Point4< vcg::Point3 > FourPoints; typedef vcg::GridStaticPtr GridType; /* class for Parameters */ struct Param { ScalarType overlap; // overlap estimation as a percentage of overlapping points. int sampleNumP; // number of samples on moving mesh P (it determines the sampling radius to be used to sample Q too) float samplingRadius; ScalarType deltaPerc; // Approximation Level (expressed as a percentage of the avg distance between samples) ScalarType deltaAbs; // Approximation Level int feetSize; // how many points in the neighborhood of each of the 4 points int scoreFeet; // how many of the feetsize points must match (max feetsize*4) to try an early interrupt ScalarType cosAngle; // max admittable angle that can be admitted between matching points in alignments (expressed as cos(ang) ) int seed; // random seed used. Need for repeatability. void Default(){ overlap = 0.5; sampleNumP=500; samplingRadius=0; deltaPerc = 0.5; deltaAbs = 0; feetSize = 25; scoreFeet = 50; seed =0; cosAngle = 0; // normals must differ more than 90 degree to be considered bad. } }; struct Stat { Stat() : initTime(0),selectCoplanarBaseTime(0),findCongruentTime(0),testAlignmentTime(0) {} clock_t initTime; clock_t selectCoplanarBaseTime; clock_t findCongruentTime; clock_t testAlignmentTime; float init() {return 1000.0f*float(initTime)/float(CLOCKS_PER_SEC);} float select() {return 1000.0f*float(selectCoplanarBaseTime)/float(CLOCKS_PER_SEC);} float findCongruent() {return 1000.0f*float(findCongruentTime)/float(CLOCKS_PER_SEC);} float testAlignment() {return 1000.0f*float(testAlignmentTime)/float(CLOCKS_PER_SEC);} }; class Couple { public: VertexPointer p0,p1; Couple(VertexPointer i, VertexPointer j, float d) : p0(i),p1(j),dist(d){} float dist; bool operator < (const Couple & o) const {return dist < o.dist;} VertexPointer operator[](const int &i) const {return (i==0)? this->p0 : this->p1;} }; struct Candidate { Candidate():score(0){} Candidate(FourPoints _p, vcg::Matrix44_T):p(_p),T(_T){} FourPoints p; vcg::Matrix44 T; int score; inline bool operator <(const Candidate & o) const {return score > o.score;} }; // class for the point 'ei' struct EPoint{ EPoint(vcg::Point3 _p, int _i):pos(_p),pi(_i){} vcg::Point3 pos; int pi; //index to R[1|2] void GetBBox(vcg::Box3 & b){b.Add(pos);} }; Param par; /// parameters Stat stat; MeshType *P; // Moving Mesh (from which the coplanar base is selected) MeshType *Q; // Fixed Mesh (mesh where to find the correspondences) math::MarsenneTwisterRNG rnd; std::vector subsetQ; // subset of the vertices in Q std::vector subsetP; // random selection on P ScalarType side; // side PMesh Invr; // invariants std::vector< Candidate > U; // the int iwinner; // winner == U[iwinner] std::vector bases; // used bases std::vector ExtB[4]; // selection of vertices "close" to the four point vcg::GridStaticPtr ugridQ; vcg::GridStaticPtr ugridP; /* returns the closest point between to segments x1-x2 and x3-x4. */ void IntersectionLineLine(const CoordType & x1,const CoordType & x2,const CoordType & x3,const CoordType & x4, CoordType&x) { CoordType a = x2-x1, b = x4-x3, c = x3-x1; x = x1 + a * ((c^b).dot(a^b)) / (a^b).SquaredNorm(); } void Init(MeshType &_movP,MeshType &_fixQ) { clock_t t0= clock(); P = &_movP; Q = &_fixQ; tri::UpdateBounding::Box(*P); if(par.seed==0) rnd.initialize(time(0)); else rnd.initialize(par.seed); ugridQ.Set(Q->vert.begin(),Q->vert.end()); ugridP.Set(P->vert.begin(),P->vert.end()); if(par.samplingRadius==0) par.samplingRadius = tri::ComputePoissonDiskRadius(*P,par.sampleNumP); tri::PoissonPruning(*P, subsetP, par.samplingRadius, par.seed); tri::PoissonPruning(*Q, subsetQ, par.samplingRadius, par.seed); par.deltaAbs = par.samplingRadius * par.deltaPerc; side = P->bbox.Dim()[P->bbox.MaxDim()]*par.overlap; //rough implementation stat.initTime+=clock()-t0; } // Try to select four coplanar points such that they are at least side distance and // bool SelectCoplanarBase(FourPoints &B, ScalarType &r1, ScalarType &r2) { clock_t t0= clock(); // choose the inter point distance ScalarType dtol = side*0.1; //rough implementation // **** first point: random B[0] = P->vert[ rnd.generate(P->vert.size())].P(); // **** second point: a random point at distance side +-dtol size_t i; for(i = 0; i < P->vert.size(); ++i){ int id = rnd.generate(P->vert.size()); ScalarType dd = (P->vert[id].P() - B[0]).Norm(); if( ( dd < side + dtol) && (dd > side - dtol)){ B[1] = P->vert[id].P(); break; } } if(i == P->vert.size()) return false; // **** third point: at distance less than side*0.8 from middle way between B[0] and B[1] const CoordType middle = (B[0]+B[1])/2.0; for(i = 0; i < P->vert.size(); ++i){ int id = rnd.generate(P->vert.size()); if( Distance(P->vert[id].P(),middle) < side*0.8 ){ B[2] = P->vert[id].P(); break; } } if(i == P->vert.size()) return false; // **** fourth point: ScalarType cpr = rnd.generate01(); CoordType crossP = B[0] *(1-cpr)+B[1]*cpr; CoordType B4 = B[2]+(crossP-B[2]).Normalize()*side; CoordType n = ((B[0]-B[1]).normalized() ^ (B[2]-B[1]).normalized()).normalized(); ScalarType radius = dtol; std::vector closests; std::vector distances; std::vector points; vcg::tri::GetInSphereVertex< MeshType, vcg::GridStaticPtr, std::vector, std::vector, std::vector >(*P,ugridP,B4,radius,closests,distances,points); if(closests.empty()) return false; int bestInd = -1; ScalarType bestv=std::numeric_limits::max(); for(i = 0; i P() - B[1]).normalized().dot(n)); if( dist_from_plane < bestv){ bestv = dist_from_plane; bestInd = i; } } if(bestv >dtol) return false; B[3] = closests[bestInd]->P(); //printf("B[3] %d\n", (typename MeshType::VertexType*)closests[best] - &(*P->vert.begin())); // compute r1 and r2 CoordType x; // std::swap(B[1],B[2]); IntersectionLineLine(B[0],B[1],B[2],B[3],x); r1 = (x - B[0]).dot(B[1]-B[0]) / (B[1]-B[0]).SquaredNorm(); r2 = (x - B[2]).dot(B[3]-B[2]) / (B[3]-B[2]).SquaredNorm(); if( ((B[0]+(B[1]-B[0])*r1)-(B[2]+(B[3]-B[2])*r2)).Norm() > par.deltaAbs ) return false; radius = side*0.5; std::vector< CoordType > samples; std::vector dists; for(int i = 0 ; i< 4; ++i){ vcg::tri::GetKClosestVertex< MeshType, vcg::GridStaticPtr, std::vector, std::vector, std::vector< CoordType > >(*P,ugridP, par.feetSize ,B[i],radius, ExtB[i], dists, samples); } //qDebug("ExtB %i",ExtB[0].size()+ExtB[1].size()+ExtB[2].size()+ExtB[3].size()); stat.selectCoplanarBaseTime+=clock()-t0; return true; } bool IsTransfCongruent(const FourPoints &B, const FourPoints &fp, vcg::Matrix44 & mat) { std::vector > fix(4); std::vector > mov(4); for(int i = 0 ; i < 4; ++i) { mov[i]=B[i]; fix[i]=fp[i]; } if(fabs( Distance(fix[0],fix[1]) - Distance(mov[0],mov[1]) ) > par.deltaAbs) return false; if(fabs( Distance(fix[0],fix[2]) - Distance(mov[0],mov[2]) ) > par.deltaAbs) return false; if(fabs( Distance(fix[0],fix[3]) - Distance(mov[0],mov[3]) ) > par.deltaAbs) return false; if(fabs( Distance(fix[1],fix[2]) - Distance(mov[1],mov[2]) ) > par.deltaAbs) return false; if(fabs( Distance(fix[1],fix[3]) - Distance(mov[1],mov[3]) ) > par.deltaAbs) return false; if(fabs( Distance(fix[2],fix[3]) - Distance(mov[2],mov[3]) ) > par.deltaAbs) return false; vcg::ComputeRigidMatchMatrix(fix,mov,mat); ScalarType maxSquaredDistance = 0.0; for(int i = 0; i < 4; ++i) maxSquaredDistance =std::max(maxSquaredDistance, SquaredDistance(mat * mov[i] ,fix[i])); return sqrt(maxSquaredDistance) < par.deltaAbs; } /// Compute the vector R1 of couple of points on FixQ at a given distance. /// Used by FindCongruent void ComputeR1(std::vector &R1) { R1.clear(); for(size_t vi = 0; vi < subsetQ.size(); ++vi) for(size_t vj = vi; vj < subsetQ.size(); ++vj){ ScalarType d = Distance(subsetQ[vi]->P(),subsetQ[vj]->P()); if( (d < side+par.deltaAbs)) { R1.push_back(Couple(subsetQ[vi],subsetQ[vj], d)); R1.push_back(Couple(subsetQ[vj],subsetQ[vi], d)); } } std::sort(R1.begin(),R1.end()); } // Find congruent elements of a base B, on Q, with approximation delta // and put them in the U vector. bool FindCongruent(const std::vector &R1, const FourPoints &B, const ScalarType r1, const ScalarType r2) { clock_t t0=clock(); int n_base=0; bool done = false; int n_closests = 0, n_congr = 0; int ac =0 ,acf = 0,tr = 0,trf =0; ScalarType d1,d2; d1 = (B[1]-B[0]).Norm(); d2 = (B[3]-B[2]).Norm(); typename std::vector::const_iterator bR1,eR1,bR2,eR2,ite; bR1 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d1-par.deltaAbs)); eR1 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d1+par.deltaAbs)); bR2 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d2-par.deltaAbs)); eR2 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d2+par.deltaAbs)); // in [bR1,eR1) there are all the pairs at a distance d1 +- par.delta // in [bR1,eR1) there are all the pairs at a distance d2 +- par.delta if(bR1 == R1.end()) return false;// if there are no such pairs return if(bR2 == R1.end()) return false; // if there are no such pairs return // put [bR1,eR1) in a mesh to have the search operator for free (lazy me) Invr.Clear(); typename PMesh::VertexIterator vii; int i = &(*bR1)-&(*R1.begin()); for(ite = bR1; ite != eR1;++ite){ vii = vcg::tri::Allocator::AddVertices(Invr,1); // (*vii).P() = Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r1; (*vii).P() .Import( ite->p0->P() + ( ite->p1->P() - ite->p0->P()) * r1); ++i; } if(Invr.vert.empty() ) return false; // per vertex attribute 'index' remaps a vertex of Invr to its corresponding point in R1 typename PMesh::template PerVertexAttributeHandle id = vcg::tri::Allocator::template AddPerVertexAttribute(Invr,std::string("index")); i = &(*bR1)-&(*R1.begin()); for(vii = Invr.vert.begin(); vii != Invr.vert.end();++vii,++i) id[vii] = i; vcg::tri::UpdateBounding::Box(Invr); std::vector R2inv; i = &(*bR2)-&(*R1.begin()); // R2inv contains all the points generated by the couples in R2 (with the reference to remap into R2) for(ite = bR2; ite != eR2;++ite){ // R2inv.push_back( EPoint( Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r2,i)); R2inv.push_back( EPoint( R1[i].p0->P() + (R1[i].p1->P() - R1[i].p0->P()) * r2,i)); ++i; } GridType ugrid; // griglia ugrid.Set(Invr.vert.begin(),Invr.vert.end()); n_closests = 0; n_congr = 0; ac =0 ; acf = 0; tr = 0; trf = 0; printf("R2Inv.size = %d \n",R2inv.size()); for(unsigned int i = 0 ; i < R2inv.size() ; ++i) { std::vector closests; // for each point in R2inv get all the points in R1 closer than par.delta vcg::Matrix44 mat; Box3x bb; bb.Add(R2inv[i].pos+CoordType(par.deltaAbs,par.deltaAbs, par.deltaAbs)); bb.Add(R2inv[i].pos-CoordType(par.deltaAbs,par.deltaAbs, par.deltaAbs)); vcg::tri::GetInBoxVertex > (Invr,ugrid,bb,closests); if(closests.size() > 5) closests.resize(5); n_closests+=closests.size(); for(unsigned int ip = 0; ip < closests.size(); ++ip) { FourPoints p; p[0] = R1[id[closests[ip]]][0]->cP(); p[1] = R1[id[closests[ip]]][1]->cP(); p[2] = R1[ R2inv[i].pi][0]->cP(); p[3] = R1[ R2inv[i].pi][1]->cP(); n_base++; if(!IsTransfCongruent(B,p,mat)) { trf++; } else{ tr++; n_congr++; Candidate c(p,mat); EvaluateAlignment(c); if( c.score > par.scoreFeet) U.push_back(c); } } } vcg::tri::Allocator::DeletePerVertexAttribute(Invr,id); printf("n_closests %5d = (An %5d ) + ( Tr %5d ) + (OK) %5d\n",n_closests,acf,trf,n_congr); stat.findCongruentTime += clock()-t0; return done; } int EvaluateSample(Candidate & fp, const CoordType & tp, const CoordType & np) { CoordType ttp = fp.T * tp; vcg::Point4 np4 = fp.T * vcg::Point4(np[0],np[1],np[2],0.0); CoordType tnp(np4[0],np4[1],np4[2]); ScalarType dist ; VertexType* v = vcg::tri::GetClosestVertex(*Q, ugridQ, ttp, par.deltaAbs*2.0, dist ); if(v!=0) { if( v->N().dot(tnp) > par.cosAngle ) return 1; else return -1; } else return 0; } // Check a candidate against the small subset of points ExtB void EvaluateAlignment(Candidate & fp){ int n_delta_close = 0; for(int i = 0 ; i< 4; ++i) { for(unsigned int j = 0; j < ExtB[i].size();++j){ n_delta_close+=EvaluateSample(fp, ExtB[i][j]->P(), ExtB[i][j]->cN()); } } fp.score = n_delta_close; } void TestAlignment(Candidate & fp) { clock_t t0 = clock(); int n_delta_close = 0; for(unsigned int j = 0; j < subsetP.size();++j){ CoordType np = subsetP[j]->N(); CoordType tp = subsetP[j]->P(); n_delta_close+=EvaluateSample(fp,tp,np); } fp.score = n_delta_close; stat.testAlignmentTime += clock()-t0; } bool Align(Matrix44x & result, vcg::CallBackPos * cb ) { int maxAttempt =100; int scoreThr = par.sampleNumP*0.8; Candidate bestC; std::vector R1; ComputeR1(R1); for(int i = 0; i < maxAttempt && bestC.score bestC.score) bestC = U[i]; } } } result = bestC.T; return bestC.score >0; } bool Align(int L, Matrix44x & result, vcg::CallBackPos * cb ) { int bestv = 0; bool found; int n_tries = 0; U.clear(); if(L==0) { // overlap is expressed as the probability that a point in P(mov) can be found in Q (fix) L = (log(1.0-0.9) / log(1.0-pow((float)par.overlap,3.f)))+1; printf("using %d bases\n",L); } std::vector R1; ComputeR1(R1); for(int t = 0; t < L; ++t ) { FourPoints B; ScalarType r1,r2; do { n_tries = 0; do { n_tries++; found = SelectCoplanarBase(B,r1,r2); } while(!found && (n_tries < 50)); if(!found) { par.overlap*=0.9; side = P->bbox.Dim()[P->bbox.MaxDim()]*par.overlap; //rough implementation ComputeR1(R1); } } while (!found && (par.overlap >0.1)); if(par.overlap < 0.1) { printf("FAILED"); return false; } bases.push_back(B); if(cb) cb(t*100/L,"Trying bases"); if(FindCongruent(R1,B,r1,r2)) break; } if(U.empty()) return false; // std::sort(U.begin(),U.end()); if(cb) cb(90,"TestAlignment"); bestv = -std::numeric_limits::max(); iwinner = 0; for(int i = 0 ; i < U.size() ;++i) { TestAlignment(U[i]); if(U[i].score > bestv){ bestv = U[i].score; iwinner = i; } } result = U[iwinner].T; Invr.Clear(); return true; } }; // end class } // namespace tri } // namespace vcg #endif