/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCGLIB_UGRID #define __VCGLIB_UGRID #include #include #include #include #include #include #include #include namespace vcg { /** Static Uniform Grid A spatial search structure for a accessing a container of objects. It is based on a uniform grid overlayed over a protion of space. The grid partion the space into cells. Cells contains just pointers to the object that are stored elsewhere. The set of objects is meant to be static and pointer stable. Useful for situation were many space related query are issued over the same dataset (ray tracing, measuring distances between meshes, re-detailing ecc.). Works well for distribution that ar reasonably uniform. How to use it: ContainerType must have a 'value_type' typedef inside. (stl containers already have it) Objects pointed by cells (of kind 'value_type') must have a 'ScalarType' typedef (float or double usually) and a member function: void GetBBox(Box3 &b) which return the bounding box of the object When using the GetClosest() method, the user must supply a functor object (whose type is a method template argument) which expose the following operator (): bool operator () (const ObjType & obj, const Point3f & point, ScalarType & mindist, Point3f & result); which return true if the distance from point to the object 'obj' is < mindist and set mindist to said distance, and result must be set as the closest point of the object to point) */ template < class OBJTYPE, class FLT=float > class GridStaticPtr: public BasicGrid, SpatialIndex { public: typedef OBJTYPE ObjType; typedef ObjType* ObjPtr; typedef typename ObjType::ScalarType ScalarType; typedef Point3 CoordType; typedef Box3 Box3x; typedef Line3 Line3x; typedef GridStaticPtr GridPtrType; typedef BasicGrid BT; /** Internal class for keeping the first pointer of object. Definizione Link dentro la griglia. Classe di supporto per GridStaticObj. */ class Link { public: /// Costruttore di default inline Link(){}; /// Costruttore con inizializzatori inline Link(ObjPtr nt, const int ni ){ assert(ni>=0); t = nt; i = ni; }; inline bool operator < ( const Link & l ) const{ return i < l.i; } inline bool operator <= ( const Link & l ) const{ return i <= l.i; } inline bool operator > ( const Link & l ) const{ return i > l.i; } inline bool operator >= ( const Link & l ) const{ return i >= l.i; } inline bool operator == ( const Link & l ) const{ return i == l.i; } inline bool operator != ( const Link & l ) const{ return i != l.i; } inline ObjPtr & Elem() { return t; } ObjType &operator *(){return *(t);} inline int & Index() { return i; } private: /// Puntatore all'elemento T ObjPtr t; /// Indirizzo del voxel dentro la griglia int i; };//end class Link typedef Link* Cell; typedef Cell CellIterator; std::vector links; /// Insieme di tutti i links std::vector grid; /// Griglia vera e propria bool Empty() const {return links.empty();} /// Date le coordinate di un grid point (corner minx,miy,minz) ritorna le celle che condividono /// l'edge cell che parte dal grid point in direzione axis inline void Grid( Point3i p, const int axis, std::vector & cl) { #ifndef NDEBUG if ( p[0]<0 || p[0] > BT::siz[0] || p[1]<0 || p[1]> BT::siz[1] || p[2]<0 || p[2]> BT::siz[2] ) assert(0); //return NULL; else #endif assert(((unsigned int) p[0]+BT::siz[0]*p[1]+BT::siz[1]*p[2])siz[axis1]-1);++j){ p[axis0]=i; p[axis1]=j; cl.push_back(Grid(p[0]+BT::siz[0]*(p[1]+BT::siz[1]*p[2]))); } } //////////////// // Official access functions //////////////// /// BY CELL Cell* Grid(const int i) { return &grid[i]; } void Grid( const Cell* g, Cell & first, Cell & last ) { first = *g; last = *(g+1); } /// BY INTEGER COORDS inline Cell* Grid( const int x, const int y, const int z ) { assert(!( x<0 || x>=BT::siz[0] || y<0 || y>=BT::siz[1] || z<0 || z>=BT::siz[2] )); assert(grid.size()>0); return &*grid.begin() + ( x+BT::siz[0]*(y+BT::siz[1]*z) ); } inline Cell* Grid( const Point3i &pi) { return Grid(pi[0],pi[1],pi[2]); } void Grid( const int x, const int y, const int z, Cell & first, Cell & last ) { Cell* g = Grid(x,y,z); first = *g; last = *(g+1); } void Grid( const Point3 & p, Cell & first, Cell & last ) { Cell* g = Grid(GridP(p)); first = *g; last = *(g+1); } /// Set the bounding box of the grid ///We need some extra space for numerical precision. template void SetBBox( const Box3Type & b ) { this->bbox.Import( b ); ScalarType t = this->bbox.Diag()/100.0; if(t == 0) t = ScalarType(1e-20); // <--- Some doubts on this (Cigno 5/1/04) this->bbox.Offset(t); this->dim = this->bbox.max - this->bbox.min; } // void ShowStats(FILE *fp) // { // // Conto le entry // //int nentry = 0; // //Hist H; // //H.SetRange(0,1000,1000); // //int pg; // //for(pg=0;pg inline void Set(const OBJITER & _oBegin, const OBJITER & _oEnd, int _size=0) { Box3 _bbox; Box3 b; for(OBJITER i = _oBegin; i!= _oEnd; ++i) { (*i).GetBBox(b); _bbox.Add(b); } if(_size ==0) _size=(int)std::distance(_oBegin,_oEnd); ///inflate the bb calculated ScalarType infl=_bbox.Diag()/_size; _bbox.min-=vcg::Point3(infl,infl,infl); _bbox.max+=vcg::Point3(infl,infl,infl); Set(_oBegin,_oEnd,_bbox,_size); } // This function automatically compute a reasonable size for the uniform grid providing the side (radius) of the cell // // Note that the bbox must be already 'inflated' so to be sure that no object will fall on the border of the grid. template inline void SetWithRadius(const OBJITER & _oBegin, const OBJITER & _oEnd, FLT _cellRadius) { Box3 _bbox; Box3 b; for(OBJITER i = _oBegin; i!= _oEnd; ++i) { (*i).GetBBox(b); _bbox.Add(b); } _bbox.min-=vcg::Point3(_cellRadius,_cellRadius,_cellRadius); _bbox.max+=vcg::Point3(_cellRadius,_cellRadius,_cellRadius); Point3i _siz; Point3 _dim = _bbox.max - _bbox.min; _dim/=_cellRadius; assert(_dim[0]>0 && _dim[1]>0 && _dim[2]>0 ); _siz[0] = (int)ceil(_dim[0]); _siz[1] = (int)ceil(_dim[1]); _siz[2] = (int)ceil(_dim[2]); Set(_oBegin,_oEnd, _bbox,_siz); } // This function automatically compute a reasonable size for the uniform grid such that the number of cells is // the same of the nubmer of elements to be inserted in the grid. // // Note that the bbox must be already 'inflated' so to be sure that no object will fall on the border of the grid. template inline void Set(const OBJITER & _oBegin, const OBJITER & _oEnd, const Box3x &_bbox, int _size=0) { if(_size==0) _size=(int)std::distance(_oBegin,_oEnd); Point3 _dim = _bbox.max - _bbox.min; Point3i _siz; BestDim( _size, _dim, _siz ); Set(_oBegin,_oEnd,_bbox,_siz); } // This is the REAL LOW LEVEL function template inline void Set(const OBJITER & _oBegin, const OBJITER & _oEnd, const Box3x &_bbox, Point3i _siz) { OBJITER i; this->bbox=_bbox; this->siz=_siz; // find voxel size starting from the provided bbox and grid size. this->dim = this->bbox.max - this->bbox.min; this->voxel[0] = this->dim[0]/this->siz[0]; this->voxel[1] = this->dim[1]/this->siz[1]; this->voxel[2] = this->dim[2]/this->siz[2]; // Allocate the grid (add one more for the final sentinel) grid.resize( this->siz[0]*this->siz[1]*this->siz[2]+1 ); // Insert all the objects into the grid links.clear(); for(i=_oBegin; i!=_oEnd; ++i) { Box3x bb; // Boundig box del tetraedro corrente (*i).GetBBox(bb); bb.Intersect(this->bbox); if(! bb.IsNull() ) { Box3i ib; // Boundig box in voxels this->BoxToIBox( bb,ib ); int x,y,z; for(z=ib.min[2];z<=ib.max[2];++z) { int bz = z*this->siz[1]; for(y=ib.min[1];y<=ib.max[1];++y) { int by = (y+bz)*this->siz[0]; for(x=ib.min[0];x<=ib.max[0];++x) // Inserire calcolo cella corrente // if( pt->Intersect( ... ) links.push_back( Link(&(*i),by+x) ); } } } } // Push della sentinella /*links.push_back( Link((typename ContainerType::iterator)NULL, (grid.size()-1)));*/ links.push_back( Link( NULL, int(grid.size())-1) ); // Ordinamento dei links sort( links.begin(), links.end() ); // Creazione puntatori ai links typename std::vector::iterator pl; unsigned int pg; pl = links.begin(); for(pg=0;pgIndex() ) // Trovato inizio { ++pl; // Ricerca prossimo blocco if(pl==links.end()) break; } } } int MemUsed() { return sizeof(GridStaticPtr)+ sizeof(Link)*links.size() + sizeof(Cell) * grid.size(); } template ObjPtr GetClosest(OBJPOINTDISTFUNCTOR & _getPointDistance, OBJMARKER & _marker, const typename OBJPOINTDISTFUNCTOR::QueryType & _p, const ScalarType & _maxDist,ScalarType & _minDist, CoordType & _closestPt) { return (vcg::GridClosest(*this,_getPointDistance,_marker, _p,_maxDist,_minDist,_closestPt)); } template unsigned int GetKClosest(OBJPOINTDISTFUNCTOR & _getPointDistance,OBJMARKER & _marker, const unsigned int _k, const CoordType & _p, const ScalarType & _maxDist,OBJPTRCONTAINER & _objectPtrs, DISTCONTAINER & _distances, POINTCONTAINER & _points) { return (vcg::GridGetKClosest(*this,_getPointDistance,_marker,_k,_p,_maxDist,_objectPtrs,_distances,_points)); } template unsigned int GetInSphere(OBJPOINTDISTFUNCTOR & _getPointDistance, OBJMARKER & _marker, const CoordType & _p, const ScalarType & _r, OBJPTRCONTAINER & _objectPtrs, DISTCONTAINER & _distances, POINTCONTAINER & _points) { return(vcg::GridGetInSphere (*this,_getPointDistance,_marker,_p,_r,_objectPtrs,_distances,_points)); } template unsigned int GetInBox(OBJMARKER & _marker, const vcg::Box3 _bbox, OBJPTRCONTAINER & _objectPtrs) { return(vcg::GridGetInBox (*this,_marker,_bbox,_objectPtrs)); } template ObjPtr DoRay(OBJRAYISECTFUNCTOR & _rayIntersector, OBJMARKER & _marker, const Ray3 & _ray, const ScalarType & _maxDist, ScalarType & _t) { return(vcg::GridDoRay(*this,_rayIntersector,_marker,_ray,_maxDist,_t)); } /* If the grid has a cubic voxel of side this function process all couple of elementes in neighbouring cells. GATHERFUNCTOR needs to expose this method: bool operator()(OBJTYPE *v1, OBJTYPE *v2); which is then called ONCE per unordered pair v1,v2. example: struct GFunctor { double radius2, iradius2; GFunctor(double radius) { radius2 = radius*radius; iradius2 = 1/radius2; } bool operator()(CVertex *v1, CVertex *v2) { Point3d &p = v1->P(); Point3d &q = v2->P(); double dist2 = (p-q).SquaredNorm(); if(dist2 < radius2) { double w = exp(dist2*iradius2); //do something } } }; */ template void Gather(GATHERFUNCTOR gfunctor) { static int corner[8*3] = { 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1 }; static int diagonals[14*2] = { 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 2, 3, 1, 3, 1, 2, 1, 4, 2, 5, 3, 6 }; Cell ostart, oend, dstart, dend; for(int z = 0; z < this->siz[2]; z++) { for(int y = 0; y < this->siz[1]; y++) { for(int x = 0; x < this->siz[0]; x++) { Grid(x, y, z, ostart, oend); for(Cell c = ostart; c != oend; c++) for(Cell s = c+1; s != oend; s++) gfunctor(c->Elem(), s->Elem()); for(int d = 2; d < 28; d += 2) { //skipping self int *cs = corner + 3*diagonals[d]; int *ce = corner + 3*diagonals[d+1]; if((x + cs[0] < this->siz[0]) && (y + cs[1] < this->siz[1]) && (z + cs[2] < this->siz[2]) && (x + ce[0] < this->siz[0]) && (y + ce[1] < this->siz[1]) && (z + ce[2] < this->siz[2])) { Grid(x+cs[0], y+cs[1], z+cs[2], ostart, oend); Grid(x+ce[0], y+ce[1], z+ce[2], dstart, dend); for(Cell c = ostart; c != oend; c++) for(Cell s = dstart; s != dend; s++) gfunctor(c->Elem(), s->Elem()); } } } } } } }; //end class GridStaticPtr } // end namespace #endif