/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
/****************************************************************************
  History

$Log: not supported by cvs2svn $
Revision 1.8  2005/02/15 12:26:06  rita_borgo
Minor changes to self-intersection

Revision 1.7  2005/02/07 15:44:31  rita_borgo
Fixed Color and Volume

Revision 1.6  2005/02/01 17:37:53  rita_borgo
Fixed Volume and Color

Revision 1.5  2005/01/18 16:33:12  rita_borgo
Added OFF file Option

Revision 1.4  2005/01/17 18:19:00  rita_borgo
Added new routines.
Self-intersection first release

Revision 1.2  2005/01/03 16:13:09  rita_borgo
Added Standard comments



****************************************************************************/
#include <vector>
#include <string>  
#include <stack>
using namespace std;

#include<vcg/simplex/vertex/vertex.h>
#include<vcg/simplex/face/with/afav.h>
#include<vcg/simplex/face/topology.h>
#include<vcg/simplex/face/pos.h>   // mi sembra di averlo aggiunto!


#include<vcg/complex/trimesh/base.h>
#include<vcg/complex/trimesh/update/topology.h>
#include <vcg/complex/trimesh/update/edges.h>
#include <vcg/complex/trimesh/update/bounding.h>
#include <vcg/complex/trimesh/clean.h>
#include <vcg/space/intersection/triangle_triangle3.h>
#include <vcg/math/histogram.h>
#include <wrap/io_trimesh/import.h>
#include <wrap/io_trimesh/export_ply.h>


// loader 
#include<wrap/io_trimesh/import_ply.h>

#include "defs.h"

using namespace vcg;
using namespace tri;
using namespace face;

class MyFace;
class MyEdge;
class MyVertex:public Vertex<float,MyEdge,MyFace>{};
class MyFace :public FaceAFAV<MyVertex,MyEdge,MyFace>{};
class MyMesh: public tri::TriMesh< std::vector<MyVertex>, std::vector<MyFace > >{};

void OpenMesh(const char *filename, MyMesh &m)
{
  int err = tri::io::Importer<MyMesh>::Open(m,filename);
  if(err) {
      printf("Error in reading %s: '%s'\n",filename,tri::io::Importer<MyMesh>::ErrorMsg(err));
      exit(-1);
    }
  printf("read mesh `%s'\n", filename);		  
}


inline char* GetExtension(char* filename)
{
  int i;
    for(i=strlen(filename)-1; i >= 0; i--)
        if(filename[i] == '.')
            break;
    if(i > 0)
        return &(filename[i+1]);
    else
        return NULL;
}


typedef MyMesh::VertexPointer  VertexPointer;
typedef MyMesh::VertexIterator  VertexIterator;

/* classe di confronto per l'algoritmo di individuazione vertici duplicati*/
template <class VertexIterator>
class DuplicateVert_Compare{
public:
	inline bool operator() (VertexIterator a, VertexIterator b)
		{
			return *a < *b;
		}
};

static int DuplicateVertex( MyMesh & m )    // V1.0
{
	if(m.vert.size()==0 || m.vn==0)
		return 0;
	std::map<VertexPointer, VertexPointer> mp;
	int i,j;
	VertexIterator vi; 
	int deleted=0;
	int k=0;
	int num_vert = m.vert.size();
	vector<VertexPointer> perm(num_vert);
	for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi, ++k)
		perm[k] = &(*vi);

	DuplicateVert_Compare<VertexPointer> c_obj;

	std::sort(perm.begin(),perm.end(),c_obj);
	j = 0;
  i = j;
  mp[perm[i]] = perm[j];
  ++i;
  for(;i!=num_vert;)
	{
		if( (! (*perm[i]).IsD()) && 
        (! (*perm[j]).IsD()) && 
				(*perm[i]).P() == (*perm[j]).cP() )
		{
			VertexPointer t = perm[i];
	    mp[perm[i]] = perm[j];
	    ++i;
			(*t).SetD();
			deleted++;
		}
		else
		{
			j = i;
	    ++i;
		}
	}
	return deleted;
}
int main(int argc,char ** argv)
{

	MyMesh m;
	bool DEBUG = false;
	//load the mesh
	//argv[1]=(char*)"c:\\checkup\\debug\\column1m.ply";
	//argv[1] = "C:\\sf\\apps\\msvc\\trimeshinfo\\Release\\prism.off";
//argv[1] = "C:\\sf\\apps\\msvc\\trimeshinfo\\Release\\prova1.ply";

    // print program info
    printf("-------------------------------\n"
           "         TriMeshInfo V.1.01 \n"
           "     http://vcg.isti.cnr.it\n"
           "   release date: "__DATE__"\n"
           "-------------------------------\n\n");


 if(DEBUG)
	argv[1] = "C:\\sf\\apps\\msvc\\trimeshinfo\\Release\\cube1.stl";
 
 else
 {
 // load input meshes.
  if(argc <= 1)
  {
     printf(MSG_ERR_N_ARGS);
     exit(-1);
  }
 }


  OpenMesh(argv[1],m);



  FILE * index;
	index = fopen((string(argv[1])+string("2.html")).c_str(),"w");
	fprintf(index,"<p>Mesh info: %s </p>\n\n\n", argv[1]);
	
	fprintf(index,"<p>GENERAL INFO </p>\n\n");
	fprintf(index,"<p>Number of vertices: %d </p>\n", m.vn);
	fprintf(index,"<p>Number of faces: %d </p>\n", m.fn);
	printf("Mesh info:\n");
	printf("	M: '%s'\n\t Number of vertices: %d \n", argv[1], m.vn);
	printf("\t Number of faces: %d \n", m.fn);

	if(m.HasPerFaceColor()||m.HasPerVertexColor())
	{
		Color4b Color=m.C();
		fprintf(index, "<p>Object color(4b): %i %i %i </p>\n\n", Color[0], Color[1], Color[2]);
		printf( "\t Object color(4b): %i %i %i \n", Color[0], Color[1], Color[2]);
	}
	
	
		vcg::tri::UpdateTopology<MyMesh>::FaceFace(m);
	
	// IS MANIFOLD
	
	MyMesh::FaceIterator f;
	MyMesh::FaceIterator g;
	vcg::face::Pos<MyMesh::FaceType> he;
	vcg::face::Pos<MyMesh::FaceType> hei;
	int j;
	bool Manifold = true;
	
	MyMesh::FaceIterator prova;
	prova = m.face.end();
	for(f=m.face.begin();f!=m.face.end();++f)
	{
		for (j=0;j<3;++j)
		{
			if(!IsManifold(*f,j))
			{
				Manifold = false;
				f= m.face.end();
				--f;
				j=3;
			}
		}
	}
	if (!Manifold)
	{
		fprintf(index, "<p> Manifold: NO </p>"); 
	  printf( "\t Manifold: NO\n"); 
	}
	else
	{
		fprintf(index, "<p> Manifold: YES </p>"); 
	  printf( "\t Manifold: YES\n "); 
	}

	// COUNT EDGES

	MyMesh::FaceIterator fi;
	int count_e = 0;
	bool counted=false;
	for(fi=m.face.begin();fi!=m.face.end();++fi)
		(*fi).ClearS();

	for(fi=m.face.begin();fi!=m.face.end();++fi)
		{
			(*fi).SetS();
			count_e +=3;
			for(int i=0; i<3; ++i)
			{
				if (IsManifold(*fi,i))
				{
					if((*fi).FFp(i)->IsS()) 
						count_e--;
				}
				else
				{
					hei.Set(&(*fi), i , fi->V(i));
					he=hei;
					he.NextF();
					while (he.f!=hei.f)
					{
						if (he.f->IsS())
						{
							counted=true;
							break;
						}
						else 
						{
							he.NextF();
						}
					}
					if (counted)
					{
						count_e--;
						counted=false;
					}
				}
			}
		}
	fprintf(index, "<p>Number of edges: %d </p>\n", count_e);
  printf("\t Number of edges: %d \n", count_e);


	// DA QUI IN POI!!!
	
	// DEGENERATED FACES

	int count_fd = 0;
	for(fi=m.face.begin(); fi!=m.face.end();++fi)
		if((*fi).Area() == 0)
			count_fd++;
	fprintf(index, "<p>Number of degenerated faces: %d </p>\n", count_fd);
  printf("\t Number of degenerated faces: %d \n", count_fd);

	// UNREFERENCED VERTEX

	int count_uv = 0;
	MyMesh::VertexIterator v;
	
	
	
	for(v=m.vert.begin();v!=m.vert.end();++v)
		(*v).ClearV();

	for(f=m.face.begin();f!=m.face.end();++f)
			for(j=0;j<3;++j)
					(*f).V(j)->SetV();

	for(v=m.vert.begin();v!=m.vert.end();++v)
		if( !(*v).IsV() )
			++count_uv;
	fprintf(index,"<p>Number of unreferenced vertices: %d</p>\n",count_uv);
  printf("\t Number of unreferenced vertices: %d\n",count_uv);


// HOLES COUNT	

	for(f=m.face.begin();f!=m.face.end();++f)
		(*f).ClearS();
	g=m.face.begin(); f=g;
	
	int BEdges=0; int numholes=0;
	

	if (Manifold)
	{
        for(f=g;f!=m.face.end();++f)
		{
			if(!(*f).IsS())
			{	
				for(j=0;j<3;j++)
				{
					if ((*f).IsBorder(j))
					{
						BEdges++;
						
						if(!(IsManifold(*f,j)))
						{
							(*f).SetS();
							hei.Set(&(*f),j,f->V(j));
							he=hei;
							do
							{
								he.NextB();
								he.f->SetS();
							//	BEdges++;
							}
							while (he.f!=hei.f);
							//BEdges--;
							numholes++;
						}
					}
				}
			}
		}
	}
	else
	{
		for(f=g;f!=m.face.end();++f)
		{
			for(j=0;j<3;j++)
				{
					if ((*f).IsBorder(j))
					{
						BEdges++;
					}
				}
		}
	}
	if (Manifold)
	{
        fprintf(index, "<p> Number of holes: %d </p> \n <p> Number of border edges: %d </p>", numholes, BEdges); 
        printf("\t Number of holes: %d \n", numholes); 
        printf("\t Number of border edges: %d\n", BEdges); 
	}
	else
	{
        fprintf(index, "<p> Number of border edges: %d </p>", BEdges); 
        printf("\t Number of border edges: %d\n", BEdges); 
	}

	// Mesh Volume
	if((m.Volume()>0.)&&(Manifold)&&(numholes==0))
	{
        fprintf(index,"<p>Volume: %d </p>\n", m.Volume());
        printf("\t Volume: %f \n", m.Volume());
	}


	// CONNECTED COMPONENTS


	for(f=m.face.begin();f!=m.face.end();++f)
		(*f).ClearS();
	int CountComp=0;
	stack<MyMesh::FacePointer> sf;	
	MyMesh::FacePointer l,gf;
  gf=&*m.face.begin(); 
	for(f=m.face.begin();f!=m.face.end();++f)
	{
		if (!(*f).IsS())
		{
			(*f).SetS();
			sf.push(&*f);
			while (!sf.empty())
			{
				gf=sf.top();
				he.Set(gf,0,gf->V(0));
				sf.pop();
				for(j=0;j<3;++j)
						if( !(*gf).IsBorder(j) )
							{
								l=he.f->FFp(j);
								if( !(*l).IsS() )
									{
										(*l).SetS();
										sf.push(l);
									}
							}
			}
		CountComp++;
		}
	}
	fprintf(index, "<p> Number of connected components: %d </p>", CountComp); 
  printf("\t Number of connected components: %d\n", CountComp); 
	
	if(CountComp ==1)
	{
		int eulero; //v-e+f 
		eulero = (m.vn-count_uv)- (count_e+BEdges)+m.fn;
		if(Manifold)
		{
			int genus = (2-eulero)>>1;
			fprintf(index, "<p> Genus: %d </p> \n ", genus); 
		  printf( "\t Genus: %d \n", genus); 
		}
	}
// REGULARITY

	bool Regular=true;
	bool Semiregular=true;
	int inc=0;
	for(v=m.vert.begin();v!=m.vert.end();++v)
		(*v).ClearS();
	for(f=m.face.begin();f!=m.face.end();++f)
	{
		for (j=0; j<3; j++)
		{
			he.Set(&(*f),j,f->V(j));
			if (!(*f).IsBorder(j) && !(*f).IsBorder((j+2)%3) && !f->V(j)->IsS())
			{
				hei=he;
				inc=1;
				he.FlipE();
				he.NextF();
				while (he.f!=hei.f)
				{
					he.FlipE();
					if (he.IsBorder())
					{
						inc=6;
						break;
					}
					he.NextF();
					inc++;
				}
				if (inc!=6)
					Regular=false;
				if (inc!=6 && inc!=5)
					Semiregular=false;
				f->V(j)->SetS();

			}
			else
				f->V(j)->SetS();
		}
		if (Semiregular==false)
			break;

	}

	if (Regular)
	{
			fprintf(index, "<p> Type of Mesh: REGULAR</p>"); 
		  printf("\t Type of Mesh: REGULAR\n"); 
	}
	else if (Semiregular)
	{
			fprintf(index, "<p> Type of Mesh: SEMIREGULAR</p>");
		  printf("\t Type of Mesh: SEMIREGULAR\n");
	}
	else 
	{
		fprintf(index, "<p> Type of Mesh: IRREGULAR</p>"); 
	  printf("\t Type of Mesh: IRREGULAR\n"); 
	}
// ORIENTABLE E ORIENTED MESH

	bool Orientable=true;
	bool Oriented=true;
	if (!Manifold)
	{
		fprintf(index, "<p> Orientable Mesh: NO</p>"); 
	  printf( "\t Orientable Mesh: NO\n"); 
	}
	else
	{
		for(f=m.face.begin();f!=m.face.end();++f)
		{
			(*f).ClearS();
			(*f).ClearUserBit(0);
		}
		gf=&*m.face.begin();
		for(f=m.face.begin();f!=m.face.end();++f)
		{
			if (!(*f).IsS())
			{
				(*f).SetS();
				sf.push(&*f);
				
				while (!sf.empty())
				{
					gf=sf.top();
					sf.pop();
					for(j=0;j<3;++j)
					{
						if( !(*gf).IsBorder(j) )
						{
							he.Set(gf,0,gf->V(0));
							l=he.f->FFp(j);
							he.Set(gf,j,gf->V(j));								
							hei.Set(he.f->FFp(j),he.f->FFi(j), (he.f->FFp(j))->V(he.f->FFi(j)));
							if( !(*gf).IsUserBit(0) )
							{
								if (he.v!=hei.v)    // bene
								{
									if ((*l).IsS() && (*l).IsUserBit(0))
									{
										Orientable=false;
										break;
									}
									else if (!(*l).IsS())
									{
										(*l).SetS();
										sf.push(l);
									}
								}	
								else if (!(*l).IsS())
								{
									Oriented=false;
									(*l).SetS();
									(*l).SetUserBit(0);
									sf.push(l);
								}
								else if ((*l).IsS() && !(*l).IsUserBit(0))
								{
									Orientable=false;
									break;
								}
							}
							else if (he.v==hei.v)    // bene
							{
								if ((*l).IsS() && (*l).IsUserBit(0))
								{
									Orientable=false;
									break;
								}
								else if (!(*l).IsS())
								{
									(*l).SetS();
									sf.push(l);
								}
							}	
							else if (!(*l).IsS())
							{
								Oriented=false;
								(*l).SetS();
								(*l).SetUserBit(0);
								sf.push(l);
							}
							else if ((*l).IsS() && !(*l).IsUserBit(0))
							{
								Orientable=false;
								break;
							}
						}
					}
				}
			}
			if (!Orientable)
				break;
		}
		if (Orientable)
		{
				fprintf(index, "<p> Orientable Mesh: YES</p>"); 
			  printf( "\t Orientable Mesh: YES\n"); 
		}
		else
		{
				fprintf(index, "<p> Orientable Mesh: NO</p>"); 
			  printf( "\t Orientable Mesh: NO\n"); 
		}
	}
	if (Oriented && Manifold)
	{
			fprintf(index, "<p> Oriented Mesh: YES</p>"); 
		  printf( "\t Oriented Mesh: YES\n"); 
	}
	else
	{
			fprintf(index, "<p> Oriented Mesh: NO</p>"); 
		  printf( "\t Oriented Mesh: NO\n"); 
	}
	int dv = DuplicateVertex(m);
	if(dv>0)
	{
		fprintf(index, "<p> Duplicated vertices: %d</p>", dv); 
		printf( "\t Duplicated vertices: %d\n",dv);
	}
	else
	{
		fprintf(index, "<p> Duplicated vertices: NO</p>"); 
		printf( "\t Duplicated vertices: NO\n");
	}
	// SELF INTERSECTION

	if (m.fn<300000)
	{
		bool SelfInt=false;
		for(f=m.face.begin();f!=m.face.end();++f)
		{
			for(g=++f , f--;g!=m.face.end();++g)
			{
				if ((*f).FFp(0)!=&(*g) && (*f).FFp(1)!=&(*g) && (*f).FFp(2)!=&(*g) &&
					f->V(0)!=g->V(0) && f->V(0)!=g->V(1) && f->V(0)!=g->V(2) &&
					f->V(1)!=g->V(0) && f->V(1)!=g->V(1) && f->V(1)!=g->V(2) &&
					f->V(2)!=g->V(0) && f->V(2)!=g->V(1) && f->V(2)!=g->V(2))
				{
					if (NoDivTriTriIsect(f->V(0)->P(), f->V(1)->P(), f->V(2)->P(),g->V(0)->P(), g->V(1)->P(), g->V(2)->P()) )
						SelfInt=true;
				}
			}
			if (SelfInt)
				break;			
		}
		if (SelfInt)
		{
			fprintf(index, "<p> Self Intersection: YES</p>"); 
			printf( "\t Self Intersection: YES\n");
		}
		else
		{
			fprintf(index, "<p> Self Intersection: NO</p>"); 
			 printf( "\t Self Intersection: NO\n"); 
		}
	}


	fclose(index);
  return 0;
}