/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2006 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCGLIB_TRIMESH_STAT #define __VCGLIB_TRIMESH_STAT // Standard headers // VCG headers #include #include #include #include #include #include namespace vcg { namespace tri{ template class Stat { public: typedef StatMeshType MeshType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::EdgeIterator EdgeIterator; typedef typename MeshType::FaceContainer FaceContainer; typedef typename vcg::Box3 Box3Type; static void ComputePerVertexQualityMinMax( MeshType & m, float &minV, float &maxV) { std::pair pp=ComputePerVertexQualityMinMax(m); minV=pp.first; maxV=pp.second; } static std::pair ComputePerVertexQualityMinMax( MeshType & m) { // assert(0); tri::RequirePerVertexQuality(m); typename MeshType::template PerMeshAttributeHandle < std::pair > mmqH; mmqH = tri::Allocator::template GetPerMeshAttribute >(m,"minmaxQ"); std::pair minmax = std::make_pair(std::numeric_limits::max(),-std::numeric_limits::max()); for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) { if( (*vi).Q() < minmax.first) minmax.first=(*vi).Q(); if( (*vi).Q() > minmax.second) minmax.second=(*vi).Q(); } mmqH() = minmax; return minmax; } static void ComputePerFaceQualityMinMax( MeshType & m, float &minV, float &maxV) { std::pair pp=ComputePerFaceQualityMinMax(m); minV=pp.first; maxV=pp.second; } static std::pair ComputePerFaceQualityMinMax( MeshType & m) { tri::RequirePerFaceQuality(m); std::pair minmax = std::make_pair(std::numeric_limits::max(),-std::numeric_limits::max()); FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) { if( (*fi).Q() < minmax.first) minmax.first =(*fi).Q(); if( (*fi).Q() > minmax.second) minmax.second=(*fi).Q(); } return minmax; } /** \short compute the barycenter of the surface thin-shell. E.g. it assume a 'empty' model where all the mass is located on the surface and compute the barycenter of that thinshell. Works for any triangulated model (no problem with open, nonmanifold selfintersecting models). Useful for computing the barycenter of 2D planar figures. */ static Point3 ComputeShellBarycenter(MeshType & m) { Point3 barycenter(0,0,0); ScalarType areaSum=0; FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) { ScalarType area=DoubleArea(*fi); barycenter += Barycenter(*fi)*area; areaSum+=area; } return barycenter/areaSum; } static ScalarType ComputeMeshArea(MeshType & m) { ScalarType area=0; for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) area += DoubleArea(*fi); return area/ScalarType(2.0); } static void ComputePerVertexQualityDistribution( MeshType & m, Distribution &h, bool selectionOnly = false) // V1.0 { tri::RequirePerVertexQuality(m); for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) ) { assert(!math::IsNAN((*vi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)"); h.Add((*vi).Q()); } } static void ComputePerFaceQualityDistribution( MeshType & m, Distribution &h, bool selectionOnly = false) // V1.0 { tri::RequirePerFaceQuality(m); for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD() && ((!selectionOnly) || (*fi).IsS()) ) { assert(!math::IsNAN((*fi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)"); h.Add((*fi).Q()); } } static void ComputePerFaceQualityHistogram( MeshType & m, Histogramf &h, bool selectionOnly=false,int HistSize=10000 ) { tri::RequirePerFaceQuality(m); std::pair minmax = tri::Stat::ComputePerFaceQualityMinMax(m); h.Clear(); h.SetRange( minmax.first,minmax.second, HistSize ); for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD() && ((!selectionOnly) || (*fi).IsS()) ){ assert(!math::IsNAN((*fi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)"); h.Add((*fi).Q()); } } static void ComputePerVertexQualityHistogram( MeshType & m, Histogramf &h, bool selectionOnly = false, int HistSize=10000 ) // V1.0 { tri::RequirePerVertexQuality(m); std::pair minmax = ComputePerVertexQualityMinMax(m); h.Clear(); h.SetRange( minmax.first,minmax.second, HistSize); for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) ) { assert(!math::IsNAN((*vi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)"); h.Add((*vi).Q()); } // Sanity check; If some very wrong value has happened in the Q value, // the histogram is messed. If a significant percentage (20% )of the values are all in a single bin // we should try to solve the problem. No easy solution here. // We choose to compute the get the 1percentile and 99 percentile values as new mixmax ranges // and just to be sure enlarge the Histogram. if(h.MaxCount() > HistSize/5) { std::vector QV; QV.reserve(m.vn); for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) QV.push_back((*vi).Q()); std::nth_element(QV.begin(),QV.begin()+m.vn/100,QV.end()); float newmin=*(QV.begin()+m.vn/100); std::nth_element(QV.begin(),QV.begin()+m.vn-m.vn/100,QV.end()); float newmax=*(QV.begin()+m.vn-m.vn/100); h.Clear(); h.SetRange(newmin, newmax, HistSize*50); for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) ) h.Add((*vi).Q()); } } static void ComputeEdgeLengthHistogram( MeshType & m, Histogramf &h) { assert(m.edge.size()>0); h.Clear(); h.SetRange( 0, m.bbox.Diag(), 10000); for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei) { if(!(*ei).IsD()) { h.Add(Distance((*ei).V(0)->P(),(*ei).V(1)->P())); } } } static ScalarType ComputeEdgeLengthAverage(MeshType & m) { Histogramf h; ComputeEdgeLengthHistogram(m,h); return h.Avg(); } static void ComputeFaceEdgeLengthDistribution( MeshType & m, Distribution &h, bool includeFauxEdge=false) { std::vector< typename tri::UpdateTopology::PEdge > edgeVec; tri::UpdateTopology::FillUniqueEdgeVector(m,edgeVec,includeFauxEdge); h.Clear(); tri::UpdateFlags::FaceBorderFromNone(m); for(size_t i=0;iP(),edgeVec[i].v[1]->P())); } static ScalarType ComputeFaceEdgeLengthAverage(MeshType & m) { double sum=0; for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) { for(int i=0;i<3;++i) sum+=double(Distance(fi->P0(i),fi->P1(i))); } return sum/(m.fn*3.0); } }; // end class } //End Namespace tri } // End Namespace vcg #endif