/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ ****************************************************************************/ #ifndef __VCGLIB_MATRIX44 #define __VCGLIB_MATRIX44 #include #include #include namespace vcg { /* Annotations: Opengl stores matrix in column-major order. That is, the matrix is stored as: a0 a4 a8 a12 a1 a5 a9 a13 a2 a6 a10 a14 a3 a7 a11 a15 e.g. glTranslate generate a matrix that is 1 0 0 tx 0 1 0 ty 0 0 1 tz 0 0 0 1 Matrix44 stores matrix in row-major order i.e. a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 and the Translate Function generate: 1 0 0 0 0 1 0 0 0 0 1 0 tx ty tz 1 */ /** This class represent a 4x4 matrix. T is the kind of element in the matrix. */ template class Matrix44 { protected: T _a[16]; public: typedef T scalar; ///@{ /** $name Contrutors * No automatic casting and default constructor is empty */ Matrix44() {}; ~Matrix44() {}; Matrix44(const Matrix44 &m); Matrix44(const T v[]); T &element(const int row, const int col); T element(const int row, const int col) const; T &operator[](const int i); const T &operator[](const int i) const; Matrix44 operator+(const Matrix44 &m) const; Matrix44 operator-(const Matrix44 &m) const; Matrix44 operator*(const Matrix44 &m) const; Point4 operator*(const Point4 &v) const; bool operator==(const Matrix44 &m) const; bool operator!= (const Matrix44 &m) const; Matrix44 operator-() const; Matrix44 operator*(const T k) const; void operator+=(const Matrix44 &m); void operator-=(const Matrix44 &m); void operator*=( const Matrix44 & m ); void operator*=( const T k ); void SetZero(); void SetIdentity(); void SetDiagonal(const T k); Matrix44 &SetScale(const T sx, const T sy, const T sz); Matrix44 &SetTranslate(const Point3 &t); Matrix44 &SetTranslate(const T sx, const T sy, const T sz); ///use radiants for angle. Matrix44 &SetRotate(T angle, const Point3 & axis); T Determinant() const; template void Import(const Matrix44 &m) { for(int i = 0; i < 16; i++) _a[i] = (T)m._a[i]; } }; /** Class for solving A * x = b. */ template class LinearSolve: public Matrix44 { public: LinearSolve(const Matrix44 &m); Point4 Solve(const Point4 &b); // solve A · x = b ///If you need to solve some equation you can use this function instead of Matrix44 one for speed. T Determinant() const; protected: ///Holds row permutation. int index[4]; //hold permutation ///Hold sign of row permutation (used for determinant sign) T d; bool Decompose(); }; /// Apply POST moltiplica la matrice al vettore (e.g. la traslazione deve stare nell'ultima riga) /// Project PRE moltiplica la matrice al vettore (e.g. la traslazione deve stare nell'ultima colonna) /*** Postmultiply (old Apply in the old interface). * SetTranslate, SetScale, SetRotate prepare the matrix for this. */ template Point3 operator*(const Point3 &p, const Matrix44 &m); ///Premultiply (old Project in the old interface) template Point3 operator*(const Matrix44 &m, const Point3 &p); template Matrix44 &Transpose(Matrix44 &m); //return NULL matrix if not invertible template Matrix44 &Invert(Matrix44 &m); template Matrix44 Inverse(const Matrix44 &m); typedef Matrix44 Matrix44s; typedef Matrix44 Matrix44i; typedef Matrix44 Matrix44f; typedef Matrix44 Matrix44d; template Matrix44::Matrix44(const Matrix44 &m) { memcpy((T *)_a, (T *)m._a, 16 * sizeof(T)); } template T &Matrix44::element(const int row, const int col) { assert(row >= 0 && row < 4); assert(col >= 0 && col < 4); return _a[(row<<2) + col]; } template T Matrix44::element(const int row, const int col) const { assert(row >= 0 && row < 4); assert(col >= 0 && col < 4); return _a[(row<<2) + col]; } template T &Matrix44::operator[](const int i) { assert(i >= 0 && i < 16); return ((T *)_a)[i]; } template const T &Matrix44::operator[](const int i) const { assert(i >= 0 && i < 16); return ((T *)_a)[i]; } template Matrix44 Matrix44::operator+(const Matrix44 &m) const { Matrix44 ret; for(int i = 0; i < 16; i++) ret[i] = operator[](i) + m[i]; } template Matrix44 Matrix44::operator-(const Matrix44 &m) const { Matrix44 ret; for(int i = 0; i < 16; i++) ret[i] = operator[](i) - m[i]; } template Matrix44 Matrix44::operator*(const Matrix44 &m) const { Matrix44 ret; for(int i = 0; i < 4; i++) for(int j = 0; j < 4; j++) { T t = 0.0; for(int k = 0; k < 4; k++) t += element(i, k) * m.element(k, j); ret.element(i, j) = t; } return ret; } template Point4 Matrix44::operator*(const Point4 &v) const { Point4 ret; for(int i = 0; i < 4; i++){ T t = 0.0; for(int k = 0; k < 4; k++) t += element(i,k) * v[k]; ret[i] = t; } return ret; } template bool Matrix44::operator==(const Matrix44 &m) const { for(int i = 0 ; i < 16; i++) if(operator[](i) != m[i]) return false; return true; } template bool Matrix44::operator!=(const Matrix44 &m) const { for(int i = 0 ; i < 16; i++) if(operator[](i) != m[i]) return true; return false; } template Matrix44 Matrix44::operator-() const { Matrix44 res; for(int i = 0; i < 16; i++) res[i] = -operator[](i); return res; } template Matrix44 Matrix44::operator*(const T k) const { Matrix44 res; for(int i = 0; i < 16; i++) res[i] = operator[](i) * k; return res; } template void Matrix44::operator+=(const Matrix44 &m) { for(int i = 0; i < 16; i++) operator[](i) += m[i]; } template void Matrix44::operator-=(const Matrix44 &m) { for(int i = 0; i < 16; i++) operator[](i) -= m[i]; } template void Matrix44::operator*=( const Matrix44 & m ) { *this = *this *m; /*for(int i = 0; i < 4; i++) { //sbagliato Point4 t(0, 0, 0, 0); for(int k = 0; k < 4; k++) { for(int j = 0; j < 4; j++) { t[k] += element(i, k) * m.element(k, j); } } for(int l = 0; l < 4; l++) element(i, l) = t[l]; } */ } template void Matrix44::operator*=( const T k ) { for(int i = 0; i < 4; i++) operator[](i) *= k; } template void Matrix44::SetZero() { memset((T *)_a, 0, 16 * sizeof(T)); } template void Matrix44::SetIdentity() { SetDiagonal(1); } template void Matrix44::SetDiagonal(const T k) { SetZero(); element(0, 0) = k; element(1, 1) = k; element(2, 2) = k; element(3, 3) = 1; } template Matrix44 &Matrix44::SetScale(const T sx, const T sy, const T sz) { SetZero(); element(0, 0) = sx; element(1, 1) = sy; element(2, 2) = sz; element(3, 3) = 1; return *this; } template Matrix44 &Matrix44::SetTranslate(const Point3 &t) { SetTranslate(t[0], t[1], t[2]); return *this; } template Matrix44 &Matrix44::SetTranslate(const T sx, const T sy, const T sz) { SetIdentity(); element(3, 0) = sx; element(3, 1) = sy; element(3, 2) = sz; return *this; } template Matrix44 &Matrix44::SetRotate(T angle, const Point3 & axis) { //angle = angle*(T)3.14159265358979323846/180; e' in radianti! T c = math::Cos(angle); T s = math::Sin(angle); T q = 1-c; Point3 t = axis; t.Normalize(); element(0,0) = t[0]*t[0]*q + c; element(1,0) = t[0]*t[1]*q - t[2]*s; element(2,0) = t[0]*t[2]*q + t[1]*s; element(3,0) = 0; element(0,1) = t[1]*t[0]*q + t[2]*s; element(1,1) = t[1]*t[1]*q + c; element(2,1) = t[1]*t[2]*q - t[0]*s; element(3,1) = 0; element(0,2) = t[2]*t[0]*q -t[1]*s; element(1,2) = t[2]*t[1]*q +t[0]*s; element(2,2) = t[2]*t[2]*q +c; element(3,2) = 0; element(0,3) = 0; element(1,3) = 0; element(2,3) = 0; element(3,3) = 1; return *this; } template T Matrix44::Determinant() const { LinearSolve solve(*this); return solve.Determinant(); } template Point3 operator*(const Matrix44 &m, const Point3 &p) { T w; Point3 s; s[0] = m.element(0, 0)*p[0] + m.element(0, 1)*p[1] + m.element(0, 2)*p[2] + m.element(0, 3); s[1] = m.element(1, 0)*p[0] + m.element(1, 1)*p[1] + m.element(1, 2)*p[2] + m.element(1, 3); s[2] = m.element(2, 0)*p[0] + m.element(2, 1)*p[1] + m.element(2, 2)*p[2] + m.element(2, 3); w = m.element(3, 0)*p[0] + m.element(3, 1)*p[1] + m.element(3, 2)*p[2] + m.element(3, 3); if(w!= 0) s /= w; return s; } template Point3 operator*(const Point3 &p, const Matrix44 &m) { T w; Point3 s; s[0] = m.element(0, 0)*p[0] + m.element(1, 0)*p[1] + m.element(2, 0)*p[2] + m.element(3, 0); s[1] = m.element(0, 1)*p[0] + m.element(1, 1)*p[1] + m.element(2, 1)*p[2] + m.element(3, 1); s[2] = m.element(0, 2)*p[0] + m.element(1, 2)*p[1] + m.element(2, 2)*p[2] + m.element(3, 2); w = m.element(0, 3)*p[0] + m.element(1, 3)*p[1] + m.element(2, 3)*p[2] + m.element(3, 3); if(w != 0) s /= w; return s; } template Matrix44 &Transpose(Matrix44 &m) { for(int i = 1; i < 4; i++) for(int j = 0; j < i; j++) { T t = m.element(i, j); m.element(i, j) = m.element(j, i); m.element(j, i) = t; } return m; } template Matrix44 &Invert(Matrix44 &m) { LinearSolve solve(m); for(int j = 0; j < 4; j++) { //Find inverse by columns. Point4 col(0, 0, 0, 0); col[j] = 1.0; col = solve.Solve(col); for(int i = 0; i < 4; i++) m.element(i, j) = col[i]; } return m; } template Matrix44 Inverse(const Matrix44 &m) { LinearSolve solve(m); Matrix44 res; for(int j = 0; j < 4; j++) { //Find inverse by columns. Point4 col(0, 0, 0, 0); col[j] = 1.0; col = solve.Solve(col); for(int i = 0; i < 4; i++) res.element(i, j) = col[i]; } return res; } /* LINEAR SOLVE IMPLEMENTATION */ template LinearSolve::LinearSolve(const Matrix44 &m): Matrix44(m) { if(!Decompose()) { for(int i = 0; i < 4; i++) index[i] = i; SetZero(); } } template T LinearSolve::Determinant() const { T det = d; for(int j = 0; j < 4; j++) det *= element(j, j); return det; } /*replaces a matrix by its LU decomposition of a rowwise permutation. d is +or -1 depeneing of row permutation even or odd.*/ #define TINY 1e-100 template bool LinearSolve::Decompose() { /* Matrix44 A; for(int i = 0; i < 16; i++) A[i] = operator[](i); SetIdentity(); Point4 scale; //* Set scale factor, scale(i) = max( |a(i,j)| ), for each row for(int i = 0; i < 4; i++ ) { index[i] = i; // Initialize row index list T scalemax = (T)0.0; for(int j = 0; j < 4; j++) scalemax = (scalemax > math::Abs(A.element(i,j))) ? scalemax : math::Abs(A.element(i,j)); scale[i] = scalemax; } //* Loop over rows k = 1, ..., (N-1) int signDet = 1; for(int k = 0; k < 3; k++ ) { //* Select pivot row from max( |a(j,k)/s(j)| ) T ratiomax = (T)0.0; int jPivot = k; for(int i = k; i < 4; i++ ) { T ratio = math::Abs(A.element(index[i], k))/scale[index[i]]; if(ratio > ratiomax) { jPivot = i; ratiomax = ratio; } } //* Perform pivoting using row index list int indexJ = index[k]; if( jPivot != k ) { // Pivot indexJ = index[jPivot]; index[jPivot] = index[k]; // Swap index jPivot and k index[k] = indexJ; signDet *= -1; // Flip sign of determinant } //* Perform forward elimination for(int i=k+1; i < 4; i++ ) { T coeff = A.element(index[i],k)/A.element(indexJ,k); for(int j=k+1; j < 4; j++ ) A.element(index[i],j) -= coeff*A.element(indexJ,j); A.element(index[i],k) = coeff; //for( j=1; j< 4; j++ ) // element(index[i],j) -= A.element(index[i], k)*element(indexJ, j); } } for(int i = 0; i < 16; i++) operator[](i) = A[i]; d = signDet; //*this = A; return true; */ d = 1; //no permutation still T scaling[4]; //Saving the scvaling information per row for(int i = 0; i < 4; i++) { T largest = 0.0; for(int j = 0; j < 4; j++) { T t = math::Abs(element(i, j)); if (t > largest) largest = t; } if (largest == 0.0) { //oooppps there is a zero row! return false; } scaling[i] = (T)1.0 / largest; } int imax; for(int j = 0; j < 4; j++) { for(int i = 0; i < j; i++) { T sum = element(i,j); for(int k = 0; k < i; k++) sum -= element(i,k)*element(k,j); element(i,j) = sum; } T largest = 0.0; for(int i = j; i < 4; i++) { T sum = element(i,j); for(int k = 0; k < j; k++) sum -= element(i,k)*element(k,j); element(i,j) = sum; T t = scaling[i] * math::Abs(sum); if(t >= largest) { largest = t; imax = i; } } if (j != imax) { for (int k = 0; k < 4; k++) { T dum = element(imax,k); element(imax,k) = element(j,k); element(j,k) = dum; } d = -(d); scaling[imax] = scaling[j]; } index[j]=imax; if (element(j,j) == 0.0) element(j,j) = (T)TINY; if (j != 3) { T dum = (T)1.0 / (element(j,j)); for (i = j+1; i < 4; i++) element(i,j) *= dum; } } return true; } template Point4 LinearSolve::Solve(const Point4 &b) { Point4 x(b); int first = -1, ip; for(int i = 0; i < 4; i++) { ip = index[i]; T sum = x[ip]; x[ip] = x[i]; if(first!= -1) for(int j = first; j <= i-1; j++) sum -= element(i,j) * x[j]; else if(sum) first = i; x[i] = sum; } for (int i = 3; i >= 0; i--) { T sum = x[i]; for (int j = i+1; j < 4; j++) sum -= element(i, j) * x[j]; x[i] = sum / element(i, i); } return x; } } //namespace #endif /*#ifdef __GL_H__ // Applicano la trasformazione intesa secondo la Apply void glMultMatrix(Matrix44 const & M) { glMultMatrixd(&(M.a[0][0]));} void glMultMatrix(Matrix44 const & M) { glMultMatrixf(&(M.a[0][0]));} void glLoadMatrix(Matrix44 const & M) { glLoadMatrixd(&(M.a[0][0]));} void glLoadMatrix(Matrix44 const & M) { glLoadMatrixf(&(M.a[0][0]));} #endif*/