/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_TRI_UPDATE_HOLE #define __VCG_TRI_UPDATE_HOLE #include // This file contains three Ear Classes // - TrivialEar // - MinimumWeightEar // - SelfIntersectionEar // and a static class Hole for filling holes that is templated on the ear class namespace vcg { namespace tri { /* An ear is identified by TWO pos. The Three vertexes of an Ear are: e0.VFlip().v e0.v e1.v Invariants: e1 == e0.NextB(); e1.FlipV() == e0; */ /** * Basic class for representing an 'ear' in a hole. * * Require FF-adajcncy and edge-manifoldness around the mesh (at most two triangles per edge) * * An ear is represented by two consecutive Pos e0,e1. * The vertex pointed by the first pos is the 'corner' of the ear * * */ template class TrivialEar { public: typedef typename MESH::FaceType FaceType; typedef typename MESH::VertexType VertexType; typedef typename MESH::FacePointer FacePointer; typedef typename MESH::VertexPointer VertexPointer; typedef typename face::Pos PosType; typedef typename MESH::ScalarType ScalarType; typedef typename MESH::CoordType CoordType; PosType e0; PosType e1; CoordType n; // the normal of the face defined by the ear const char * Dump() {return 0;} // The following members are useful to consider the Ear as a generic // with p0 the 'center' of the ear. const CoordType &cP(int i) const {return P(i);} const CoordType &P(int i) const { switch(i) { case 0 : return e0.v->P(); case 1 : return e1.v->P(); case 2 : return e0.VFlip()->P(); default: assert(0); } return e0.v->P(); } ScalarType quality; ScalarType angleRad; TrivialEar(){} TrivialEar(const PosType & ep) { e0=ep; assert(e0.IsBorder()); e1=e0; e1.NextB(); n=TriangleNormal(*this); ComputeQuality(); ComputeAngle(); } /// Compute the angle of the two edges of the ear. // it tries to make the computation in a precision safe way. // the angle computation takes into account the case of reversed ears void ComputeAngle() { angleRad=Angle(cP(2)-cP(0), cP(1)-cP(0)); ScalarType flipAngle = n.dot(e0.v->N()); if(flipAngle<0) angleRad = (2.0 *(ScalarType)M_PI) - angleRad; } virtual inline bool operator < ( const TrivialEar & c ) const { return quality < c.quality; } bool IsNull(){return e0.IsNull() || e1.IsNull();} void SetNull(){e0.SetNull();e1.SetNull();} virtual void ComputeQuality() { quality = QualityFace(*this) ; } bool IsUpToDate() {return ( e0.IsBorder() && e1.IsBorder());} // An ear is degenerated if both of its two endpoints are non manifold. bool IsDegen() { if(e0.VFlip()->IsUserBit(NonManifoldBit()) && e1.V()->IsUserBit(NonManifoldBit())) return true; else return false; } bool IsConcave() const {return(angleRad > (float)M_PI);} /** NonManifoldBit * To handle non manifoldness situations we keep track * of the vertices of the hole boundary that are traversed by more than a single boundary. * */ static int &NonManifoldBit() { static int _NonManifoldBit=0; return _NonManifoldBit; } static int InitNonManifoldBitOnHoleBoundary(const PosType &p) { if(NonManifoldBit()==0) NonManifoldBit() = VertexType::NewBitFlag(); int holeSize=0; //First loop around the hole to mark non manifold vertices. PosType ip = p; // Pos iterator do{ ip.V()->ClearUserBit(NonManifoldBit()); ip.V()->ClearV(); ip.NextB(); holeSize++; } while(ip!=p); ip = p; // Re init the pos iterator for another loop (useless if everithing is ok!!) do{ if(!ip.V()->IsV()) ip.V()->SetV(); else // All the vertexes that are visited more than once are non manifold ip.V()->SetUserBit(NonManifoldBit()); ip.NextB(); } while(ip!=p); return holeSize; } // When you close an ear you have to check that the newly added triangle does not create non manifold situations // This can happen if the new edge already exists in the mesh. // We test that looping around one extreme of the ear we do not find the other vertex bool CheckManifoldAfterEarClose() { PosType pp = e1; VertexPointer otherV = e0.VFlip(); assert(pp.IsBorder()); do { pp.FlipE(); pp.FlipF(); if(pp.VFlip()==otherV) return false; } while(!pp.IsBorder()); return true; } /** * @brief Close the current ear by adding a triangle to the mesh * and returning up to two new possible ears to be closed. * * @param np0 The first new pos to be inserted in the heap * @param np1 The second new pos * @param f the already allocated face to be used to close the ear * @return true if it successfully add a triangle * * +\ * +++\ ------- * +++ep\ /| +++en/\ * +++---| /e1 ++++++++\ * ++++++| /++++++++++++++\ * +++ e0|o /+++++++++++++++++++ * +++ \|/+++++++++++++++++++++ * +++++++++++++++++++++++++++++ * * There are three main peculiar cases: * (T)+++++++++++++ (A) /+++++ (B) /en+++++++ * /+++++++++++++++ /++++++ /++++++++++ * ++++++ep==en +++ ep\ /en ++++ /e1 ++++++++ * ++++++ ----/| ++ ------ ----/| ++ ------------/|+++ * ++++++| /e1 ++ ++++++| /e1 ++ ++++++| o/e0|+++ * ++++++| /++++++ ++++++| /++++++ ++++++| /++++++++ * +++ e0|o/+++++++ +++ e0|o/+++++++ +++ ep| /++++++++++ * +++ \|/++++++++ +++ \|/++++++++ +++ \|/++++++++++++ * ++++++++++++++++ ++++++++++++++++ ++++++++++++++++++++ */ virtual bool Close(PosType &np0, PosType &np1, FaceType *f) { // simple topological check if(e0.f==e1.f) { //printf("Avoided bad ear"); return false; } PosType ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // ep previous PosType en=e1; en.NextB(); // en next if(ep!=en) if(!CheckManifoldAfterEarClose()) return false; (*f).V(0) = e0.VFlip(); (*f).V(1) = e0.v; (*f).V(2) = e1.v; f->N() = TriangleNormal(*f).Normalize(); face::FFAttachManifold(f,0,e0.f,e0.z); face::FFAttachManifold(f,1,e1.f,e1.z); face::FFSetBorder(f,2); // First Special Case (T): Triangular hole if(ep==en) { //printf("Closing the last triangle"); face::FFAttachManifold(f,2,en.f,en.z); np0.SetNull(); np1.SetNull(); } // Second Special Case (A): Non Manifold on ep else if(ep.v==en.v) { //printf("Ear Non manif A\n"); assert(ep.v->IsUserBit(NonManifoldBit())); ep.v->ClearUserBit(NonManifoldBit()); PosType enold=en; en.NextB(); face::FFAttachManifold(f,2,enold.f,enold.z); np0=ep; assert(!np0.v->IsUserBit(NonManifoldBit())); np1.SetNull(); } // Third Special Case (B): Non Manifold on e1 else if(ep.VFlip()==e1.v) { assert(e1.v->IsUserBit(NonManifoldBit())); e1.v->ClearUserBit(NonManifoldBit()); //printf("Ear Non manif B\n"); PosType epold=ep; ep.FlipV(); ep.NextB(); ep.FlipV(); face::FFAttachManifold(f,2,epold.f,epold.z); np0=ep; // assign the two new assert(!np0.v->IsUserBit(NonManifoldBit())); np1.SetNull(); // pos that denote the ears } else // Standard Case. { np0=ep; if(np0.v->IsUserBit(NonManifoldBit())) np0.SetNull(); np1=PosType(f,2,e1.v); if(np1.v->IsUserBit(NonManifoldBit())) np1.SetNull(); } return true; } }; // end TrivialEar Class //Ear with FillHoleMinimumWeight's quality policy template class MinimumWeightEar : public TrivialEar { public: static float &DiedralWeight() { static float _dw=0.1; return _dw;} typedef TrivialEar TE; typename MESH::ScalarType dihedralRad; typename MESH::ScalarType aspectRatio; const char * Dump() { static char buf[200]; if(this->IsConcave()) sprintf(buf,"Dihedral -(deg) %6.2f Quality %6.2f\n",math::ToDeg(dihedralRad),aspectRatio); else sprintf(buf,"Dihedral (deg) %6.2f Quality %6.2f\n",math::ToDeg(dihedralRad),aspectRatio); return buf; } MinimumWeightEar(){} MinimumWeightEar(const typename face::Pos& ep) : TrivialEar(ep) { ComputeQuality(); } // In the heap, by default, we retrieve the LARGEST value, // so if we need the ear with minimal dihedral angle, we must reverse the sign of the comparison. // The concave elements must be all in the end of the heap, sorted accordingly, // So if only one of the two ear is Concave that one is always the minimum one. // the pow function is here just to give a way to play with different weighting schemas, balancing in a different way virtual inline bool operator < ( const MinimumWeightEar & c ) const { if(TE::IsConcave() && ! c.IsConcave() ) return true; if(!TE::IsConcave() && c.IsConcave() ) return false; return aspectRatio - (dihedralRad/M_PI)*DiedralWeight() < c.aspectRatio -(c.dihedralRad/M_PI)*DiedralWeight(); // return (pow((float)dihedralRad,(float)DiedralWeight())/aspectRatio) > (pow((float)c.dihedralRad,(float)DiedralWeight())/c.aspectRatio); } // the real core of the whole hole filling strategy. virtual void ComputeQuality() { //compute quality by (dihedral ancgle, area/sum(edge^2) ) typename MESH::CoordType n1=TE::e0.FFlip()->cN(); typename MESH::CoordType n2=TE::e1.FFlip()->cN(); dihedralRad = std::max(Angle(TE::n,n1),Angle(TE::n,n2)); aspectRatio = QualityFace(*this); } }; // end class MinimumWeightEar //Ear for selfintersection algorithm template class SelfIntersectionEar : public MinimumWeightEar { public: typedef typename MESH::FaceType FaceType; typedef typename MESH::FacePointer FacePointer; typedef typename face::Pos PosType; typedef typename MESH::ScalarType ScalarType; typedef typename MESH::CoordType CoordType; static std::vector &AdjacencyRing() { static std::vector ar; return ar; } SelfIntersectionEar(){} SelfIntersectionEar(const PosType & ep):MinimumWeightEar(ep){} virtual bool Close(PosType &np0, PosType &np1, FacePointer f) { PosType ep=this->e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0 PosType en=this->e1; en.NextB(); // he successivo a e1 // bool triangularHole = false; // if(en==ep || en-) triangularHole=true; //costruisco la faccia e poi testo, o copio o butto via. (*f).V(0) = this->e0.VFlip(); (*f).V(1) = this->e0.v; (*f).V(2) = this->e1.v; face::FFSetBorder(f,0); face::FFSetBorder(f,1); face::FFSetBorder(f,2); typename std::vector< FacePointer >::iterator it; for(it = this->AdjacencyRing().begin();it!= this->AdjacencyRing().end();++it) { if(!(*it)->IsD()) { if( tri::Clean::TestFaceFaceIntersection(f,*it)) return false; // We must also check that the newly created face does not have any edge in common with other existing surrounding faces // Only the two faces of the ear can share an edge with the new face if(face::CountSharedVertex(f,*it)==2) { int e0,e1; bool ret=face::FindSharedEdge(f,*it,e0,e1); assert(ret); if(!face::IsBorder(**it,e1)) return false; } } } bool ret=TrivialEar::Close(np0,np1,f); if(ret) AdjacencyRing().push_back(f); return ret; } }; // end class SelfIntersectionEar /** Hole * Main hole filling templated class. * */ template class Hole { public: typedef typename MESH::VertexType VertexType; typedef typename MESH::VertexPointer VertexPointer; typedef typename MESH::ScalarType ScalarType; typedef typename MESH::FaceType FaceType; typedef typename MESH::FacePointer FacePointer; typedef typename MESH::FaceIterator FaceIterator; typedef typename MESH::CoordType CoordType; typedef typename vcg::Box3 Box3Type; typedef typename face::Pos PosType; public: class Info { public: Info(){} Info(PosType const &pHole, int const pHoleSize, Box3 &pHoleBB) { p=pHole; size=pHoleSize; bb=pHoleBB; } PosType p; int size; Box3Type bb; bool operator < (const Info & hh) const {return size < hh.size;} ScalarType Perimeter() { ScalarType sum=0; PosType ip = p; do { sum+=Distance(ip.v->cP(),ip.VFlip()->cP()); ip.NextB(); } while (ip != p); return sum; } // Support function to test the validity of a single hole loop // for now it test only that all the edges are border; // The real test should check if all non manifold vertices // are touched only by edges belonging to this hole loop. bool CheckValidity() { if(!p.IsBorder()) return false; PosType ip=p;ip.NextB(); for(;ip!=p;ip.NextB()) { if(!ip.IsBorder()) return false; } return true; } }; /** FillHoleEar * Main Single Hole Filling Function * Given a specific hole (identified by the Info h) it fills it * It also update a vector of face pointers * It uses a priority queue to choose the best ear to be closed */ template static void FillHoleEar(MESH &m, // The mesh to be filled const PosType &p, // the particular hole to be filled std::vector &facePointersToBeUpdated) { assert(tri::IsValidPointer(m,p.f)); assert(p.IsBorder()); int holeSize = EAR::InitNonManifoldBitOnHoleBoundary(p); FaceIterator f = tri::Allocator::AddFaces(m, holeSize-2, facePointersToBeUpdated); std::priority_queue< EAR > EarHeap; PosType fp = p; do{ EAR appEar = EAR(fp); if(!fp.v->IsUserBit(EAR::NonManifoldBit())) EarHeap.push( appEar ); //printf("Adding ear %s ",app.Dump()); fp.NextB(); assert(fp.IsBorder()); }while(fp!=p); // Main Ear closing Loop while( holeSize > 2 && !EarHeap.empty() ) { EAR BestEar=EarHeap.top(); EarHeap.pop(); if(BestEar.IsUpToDate() && !BestEar.IsDegen()) { if((*f).HasPolyInfo()) (*f).Alloc(3); PosType ep0,ep1; if(BestEar.Close(ep0,ep1,&*f)) { if(!ep0.IsNull()){ assert(!ep0.v->IsUserBit(EAR::NonManifoldBit())); EarHeap.push(EAR(ep0)); } if(!ep1.IsNull()){ assert(!ep1.v->IsUserBit(EAR::NonManifoldBit())); EarHeap.push(EAR(ep1)); } --holeSize; ++f; } }//is update() } // If the hole had k non manifold vertexes it requires less than n-2 face ( it should be n - 2*(k+1) ), // so we delete the remaining ones. while(f!=m.face.end()){ tri::Allocator::DeleteFace(m,*f); f++; } } template static int EarCuttingFill(MESH &m, int sizeHole, bool Selected = false, CallBackPos *cb=0) { std::vector< Info > vinfo; GetInfo(m, Selected,vinfo); typename std::vector::iterator ith; int indCb=0; int holeCnt=0; std::vector facePtrToBeUpdated; for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith) facePtrToBeUpdated.push_back( &(*ith).p.f ); for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith) { indCb++; if(cb) (*cb)(indCb*10/vinfo.size(),"Closing Holes"); if((*ith).size < sizeHole){ holeCnt++; FillHoleEar< EAR >(m, (*ith).p,facePtrToBeUpdated); } } return holeCnt; } /// Main Hole Filling function. /// Given a mesh search for all the holes smaller than a given size and fill them /// It returns the number of filled holes. template static int EarCuttingIntersectionFill(MESH &m, const int maxSizeHole, bool Selected, CallBackPos *cb=0) { std::vector vinfo; GetInfo(m, Selected,vinfo); typename std::vector::iterator ith; // collect the face pointer that has to be updated by the various addfaces std::vector vfpOrig; for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith) vfpOrig.push_back( &(*ith).p.f ); int indCb=0; int holeCnt=0; for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith) { indCb++; if(cb) (*cb)(indCb*10/vinfo.size(),"Closing Holes"); if((*ith).size < maxSizeHole){ std::vector facePtrToBeUpdated; holeCnt++; facePtrToBeUpdated=vfpOrig; EAR::AdjacencyRing().clear(); //Loops around the hole to collect the faces that have to be tested for intersection. PosType ip = (*ith).p; do { PosType inp = ip; do { inp.FlipE(); inp.FlipF(); EAR::AdjacencyRing().push_back(inp.f); } while(!inp.IsBorder()); ip.NextB(); }while(ip != (*ith).p); typename std::vector::iterator fpi; for(fpi=EAR::AdjacencyRing().begin();fpi!=EAR::AdjacencyRing().end();++fpi) facePtrToBeUpdated.push_back( &*fpi ); FillHoleEar(m, ith->p,facePtrToBeUpdated); EAR::AdjacencyRing().clear(); } } return holeCnt; } static void GetInfo(MESH &m, bool Selected ,std::vector& VHI) { tri::UpdateFlags::FaceClearV(m); for(FaceIterator fi = m.face.begin(); fi!=m.face.end(); ++fi) { if(!(*fi).IsD()) { if(Selected && !(*fi).IsS()) { //se devo considerare solo i triangoli selezionati e //quello che sto considerando non lo e' lo marchio e vado avanti (*fi).SetV(); } else { for(int j =0; j<3 ; ++j) { if( face::IsBorder(*fi,j) && !(*fi).IsV() ) {//Trovato una faccia di bordo non ancora visitata. (*fi).SetV(); PosType sp(&*fi, j, (*fi).V(j)); PosType fp=sp; int holesize=0; Box3Type hbox; hbox.Add(sp.v->cP()); //printf("Looping %i : (face %i edge %i) \n", VHI.size(),sp.f-&*m.face.begin(),sp.z); sp.f->SetV(); do { sp.f->SetV(); hbox.Add(sp.v->cP()); ++holesize; sp.NextB(); sp.f->SetV(); assert(sp.IsBorder()); }while(sp != fp); //ho recuperato l'inofrmazione su tutto il buco VHI.push_back( Info(sp,holesize,hbox) ); } }//for sugli edge del triangolo }//S & !S }//!IsD() }//for principale!!! } //Minimum Weight Algorithm class Weight { public: Weight() { ang = 180; ar = FLT_MAX ;} Weight( float An, float Ar ) { ang=An ; ar= Ar;} ~Weight() {} float angle() const { return ang; } float area() const { return ar; } Weight operator+( const Weight & other ) const {return Weight( std::max( angle(), other.angle() ), area() + other.area());} bool operator<( const Weight & rhs ) const {return ( angle() < rhs.angle() ||(angle() == rhs.angle() && area() < rhs.area())); } private: float ang; float ar; }; /* \ / \/ v1*---------*v4 / \ / / \ / / \ / /ear \ / *---------*- | v3 v2\ */ static float ComputeDihedralAngle(CoordType p1,CoordType p2,CoordType p3,CoordType p4) { CoordType n1 = Normal(p1,p3,p2); CoordType n2 = Normal(p1,p2,p4); return math::ToDeg(AngleN(n1,n2)); } static bool existEdge(PosType pi,PosType pf) { PosType app = pi; PosType appF = pi; PosType tmp; assert(pi.IsBorder()); appF.NextB(); appF.FlipV(); do { tmp = app; tmp.FlipV(); if(tmp.v == pf.v) return true; app.FlipE(); app.FlipF(); if(app == pi)return false; }while(app != appF); return false; } static Weight computeWeight( int i, int j, int k, std::vector pv, std::vector< std::vector< int > > v) { PosType pi = pv[i]; PosType pj = pv[j]; PosType pk = pv[k]; //test complex edge if(existEdge(pi,pj) || existEdge(pj,pk)|| existEdge(pk,pi) ) { return Weight(); } // Return an infinite weight, if one of the neighboring patches // could not be created. if(v[i][j] == -1){return Weight();} if(v[j][k] == -1){return Weight();} //calcolo il massimo angolo diedrale, se esiste. float angle = 0.0f; PosType px; if(i + 1 == j) { px = pj; px.FlipE(); px.FlipV(); angle = std::max(angle , ComputeDihedralAngle(pi.v->P(), pj.v->P(), pk.v->P(), px.v->P()) ); } else { angle = std::max( angle, ComputeDihedralAngle(pi.v->P(),pj.v->P(), pk.v->P(), pv[ v[i][j] ].v->P())); } if(j + 1 == k) { px = pk; px.FlipE(); px.FlipV(); angle = std::max(angle , ComputeDihedralAngle(pj.v->P(), pk.v->P(), pi.v->P(), px.v->P()) ); } else { angle = std::max( angle, ComputeDihedralAngle(pj.v->P(),pk.v->P(), pi.v->P(), pv[ v[j][k] ].v->P())); } if( i == 0 && k == (int)v.size() - 1) { px = pi; px.FlipE(); px.FlipV(); angle = std::max(angle , ComputeDihedralAngle(pk.v->P(), pi.v->P(), pj.v->P(),px.v->P() ) ); } ScalarType area = ( (pj.v->P() - pi.v->P()) ^ (pk.v->P() - pi.v->P()) ).Norm() * 0.5; return Weight(angle, area); } static void calculateMinimumWeightTriangulation(MESH &m, FaceIterator f,std::vector vv ) { std::vector< std::vector< Weight > > w; //matrice dei pesi minimali di ogni orecchio preso in conzideraione std::vector< std::vector< int > > vi;//memorizza l'indice del terzo vertice del triangolo //hole size int nv = vv.size(); w.clear(); w.resize( nv, std::vector( nv, Weight() ) ); vi.resize( nv, std::vector( nv, 0 ) ); //inizializzo tutti i pesi possibili del buco for ( int i = 0; i < nv-1; ++i ) w[i][i+1] = Weight( 0, 0 ); //doppio ciclo for per calcolare di tutti i possibili triangoli i loro pesi. for ( int j = 2; j < nv; ++j ) { for ( int i = 0; i + j < nv; ++i ) { //per ogni triangolazione mi mantengo il minimo valore del peso tra i triangoli possibili Weight minval; //indice del vertice che da il peso minimo nella triangolazione corrente int minIndex = -1; //ciclo tra i vertici in mezzo a i due prefissati for ( int m = i + 1; m < i + j; ++m ) { Weight a = w[i][m]; Weight b = w[m][i+j]; Weight newval = a + b + computeWeight( i, m, i+j, vv, vi); if ( newval < minval ) { minval = newval; minIndex = m; } } w[i][i+j] = minval; vi[i][i+j] = minIndex; } } //Triangulate int i, j; i=0; j=nv-1; triangulate(m,f, i, j, vi, vv); while(f!=m.face.end()) { (*f).SetD(); ++f; m.fn--; } } static void triangulate(MESH &m, FaceIterator &f,int i, int j, std::vector< std::vector > vi, std::vector vv) { if(i + 1 == j){return;} if(i==j)return; int k = vi[i][j]; if(k == -1) return; //Setto i vertici f->V(0) = vv[i].v; f->V(1) = vv[k].v; f->V(2) = vv[j].v; f++; triangulate(m,f,i,k,vi,vv); triangulate(m,f,k,j,vi,vv); } static void MinimumWeightFill(MESH &m, int holeSize, bool Selected) { std::vector vvi; std::vector vfp; std::vector vinfo; typename std::vector::iterator VIT; GetInfo(m, Selected,vinfo); for(VIT = vinfo.begin(); VIT != vinfo.end();++VIT) { vvi.push_back(VIT->p); } typename std::vector::iterator ith; typename std::vector::iterator ithn; typename std::vector::iterator itf; std::vector app; PosType ps; std::vector tr; std::vector vf; for(ith = vvi.begin(); ith!= vvi.end(); ++ith) { tr.clear(); vf.clear(); app.clear(); vfp.clear(); ps = *ith; getBoundHole(ps,app); if(app.size() <= size_t(holeSize) ) { typename std::vector::iterator itP; std::vector vfp; for(ithn = vvi.begin(); ithn!= vvi.end(); ++ithn) vfp.push_back(&(ithn->f)); for(itP = app.begin (); itP != app.end ();++itP) vfp.push_back( &(*itP).f ); //aggiungo le facce FaceIterator f = tri::Allocator::AddFaces(m, (app.size()-2) , vfp); calculateMinimumWeightTriangulation(m,f, app); } } } static void getBoundHole (PosType sp,std::vector&ret) { PosType fp = sp; //take vertex around the hole do { assert(fp.IsBorder()); ret.push_back(fp); fp.NextB(); }while(sp != fp); } };// class Hole } // end namespace tri } // end namespace vcg #endif