/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.14 2004/03/05 17:55:01 tarini errorino: upper case in Zero() Revision 1.13 2004/03/03 14:22:48 cignoni Yet against cr lf mismatch Revision 1.12 2004/02/23 23:42:26 cignoni Translated comments, removed unusued stuff. corrected linefeed/cr Revision 1.11 2004/02/19 16:12:28 cignoni cr lf mismatch 2 Revision 1.10 2004/02/19 16:06:24 cignoni cr lf mismatch Revision 1.8 2004/02/19 15:13:40 cignoni corrected sqrt and added doxygen groups Revision 1.7 2004/02/17 02:08:47 cignoni Di prova... Revision 1.6 2004/02/15 23:35:47 cignoni Cambiato nome type template in accordo alla styleguide Revision 1.5 2004/02/10 01:07:15 cignoni Edited Comments and GPL license Revision 1.4 2004/02/09 13:48:02 cignoni Edited doxygen comments ****************************************************************************/ #ifndef __VCGLIB_POINT #define __VCGLIB_POINT #include #include #include namespace vcg { /** \addtogroup space */ /*@{*/ /** The templated class for representing a point in 3D space. The class is templated over the ScalarType class that is used to represent coordinates. All the usual operator overloading (* + - ...) is present. */ template class Point : public Space, Linear { public: typedef S ScalarType; typedef VoidType ParamType; typedef Point PointType; enum {Dimension=N}; protected: /// The only data member. Hidden to user. S _v[N]; public: //@{ /** @name Standard Constructors and Initializers No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types **/ inline Point () { } inline Point ( const S nx, const S ny, const S nz, const S nw ) { static_assert(N==4); _v[0] = nx; _v[1] = ny; _v[2] = nz; _v[3] = nw; } inline Point ( const S nx, const S ny, const S nz) { static_assert(N==3); _v[0] = nx; _v[1] = ny; _v[2] = nz; } inline Point ( const S nx, const S ny) { static_assert(N==2); _v[0] = nx; _v[1] = ny; } inline Point ( const S nv[N] ) { _v[0] = nv[0]; _v[1] = nv[1]; if (N>2) _v[2] = nv[2]; if (N>3) _v[3] = nv[3]; } /// Padding function: give a default 0 value to all the elements that are not in the [0..2] range. /// Useful for managing in a consistent way object that could have point2 / point3 / point4 inline S Ext( const int i ) const { if(i>=0 && i<=N) return _v[i]; else return 0; } template inline void Import( const Point & b ) { _v[0] = ScalarType(b[0]); _v[1] = ScalarType(b[1]); if (N>2) { if (N2>2) _v[2] = ScalarType(b[2]); else _v[2] = 0}; if (N>3) { if (N2>3) _v[3] = ScalarType(b[3]); else _v[3] = 0}; } static inline Point Construct( const PointType & b ) { PointType p; p.Import(b); return p; } //@} //@{ /** @name Data Access. access to data is done by overloading of [] or explicit naming of coords (x,y,z)**/ inline S & operator [] ( const int i ) { assert(i>=0 && i=0 && i<3); return _v[i]; } inline const S &X() const { return _v[0]; } inline const S &Y() const { return _v[1]; } inline const S &Z() const { static_assert(N>2); return _v[2]; } inline const S &W() const { static_assert(N>3); return _v[3]; } inline S &X() { return _v[0]; } inline S &Y() { return _v[1]; } inline S &Z() { static_assert(N>2); return _v[2]; } inline S &W() { static_assert(N>3); return _v[3]; } inline const S * V() const { return _v; } inline S & V( const int i ) { assert(i>=0 && i=0 && i2) _v[2] = 0; if (N>3) _v[3] = 0; } inline Point operator + ( Point const & p) const { if (N==2) return Point( _v[0]+p._v[0], _v[1]+p._v[1] ); if (N==3) return Point( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2] ); if (N==4) return Point( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2], _v[3]+p._v[3] ); } inline Point operator - ( Point const & p) const { if (N==2) return Point( _v[0]-p._v[0], _v[1]-p._v[1] ); if (N==3) return Point( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2] ); if (N==4) return Point( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2], _v[3]-p._v[3] ); } inline Point operator * ( const S s ) const { if (N==2) return Point( _v[0]*s, _v[1]*s ); if (N==3) return Point( _v[0]*s, _v[1]*s, _v[2]*s ); if (N==4) return Point( _v[0]*s, _v[1]*s, _v[2]*s, _v[3]*s ); } inline Point operator / ( const S s ) const { if (N==2) return Point( _v[0]/s, _v[1]/s ); if (N==3) return Point( _v[0]/s, _v[1]/s, _v[2]/s ); if (N==4) return Point( _v[0]/s, _v[1]/s, _v[2]/s, _v[3]/s ); } inline Point & operator += ( Point const & p) { _v[0] += p._v[0]; _v[1] += p._v[1]; if (N>2) _v[2] += p._v[2]; if (N>3) _v[3] += p._v[3]; return *this; } inline Point & operator -= ( Point const & p) { _v[0] -= p._v[0]; _v[1] -= p._v[1]; if (N>2) _v[2] -= p._v[2]; if (N>3) _v[3] -= p._v[3]; return *this; } inline Point & operator *= ( const S s ) { _v[0] *= s; _v[1] *= s; if (N>2) _v[2] *= s; if (N>3) _v[3] *= s; return *this; } inline Point & operator /= ( const S s ) { _v[0] /= s; _v[1] /= s; if (N>2) _v[2] /= s; if (N>3) _v[3] /= s; return *this; } inline Point operator - () const { if (N==2) return Point ( -_v[0], -_v[1] ); if (N==3) return Point ( -_v[0], -_v[1], -_v[2] ); if (N==4) return Point ( -_v[0], -_v[1], -_v[2] , -_v[3] ); } //@} //@{ /** @name Dot products **/ /// Dot product inline S operator * ( Point const & p ) const { if (N==2) return ( _v[0]*p._v[0] + _v[1]*p._v[1] ); if (N==3) return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] ); if (N==4) return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] + _v[2]*p._v[2] ); }; /// slower version, more stable (double precision only) inline S StableDot ( const Point & p ) const { if (N==2) return _v[0]*p._v[0] + _v[1]*p._v[1]; if (N==4) { S k0=_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2], k3=_v[3]*p._v[3]; int exp0,exp1,exp2,exp3; frexp( double(k0), &exp0 );frexp( double(k1), &exp1 ); frexp( double(k2), &exp2 );frexp( double(k3), &exp3 ); if (exp0>exp1) { math::Swap(k0,k1); math::Swap(exp0,exp1); } if (exp2>exp3) { math::Swap(k2,k3); math::Swap(exp2,exp3); } if (exp0>exp2) { math::Swap(k0,k2); math::Swap(exp0,exp2); } if (exp1>exp3) { math::Swap(k1,k3); math::Swap(exp1,exp3); } if (exp2>exp3) { math::Swap(k2,k3); math::Swap(exp2,exp3); } return ( (k0 + k1) + k2 ) +k3; }; if (N==3) { T k0=_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2]; int exp0,exp1,exp2; frexp( double(k0), &exp0 ); frexp( double(k1), &exp1 ); frexp( double(k2), &exp2 ); if( exp0 ( _v[1]*p._v[2] - _v[2]*p._v[1], _v[2]*p._v[0] - _v[0]*p._v[2], _v[0]*p._v[1] - _v[1]*p._v[0] ); } /// Cross product for 2D Point /// if called from a 3D or 4D points, returns the z component of the cross prod. inline S operator % ( Point const & p ) const { return _v[0]*p._v[1] - _v[1]*p._v[0]; } //@} //@{ /** @name Norms **/ // Euclidean norm inline S Norm() const { if (N==2) return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] ); if (N==3) return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] ); if (N==4) return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[4]*_v[4] ); } // Squared Euclidean norm inline S SquaredNorm() const { if (N==2) return ( _v[0]*_v[0] + _v[1]*_v[1] ); if (N==3) return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] ); if (N==4) return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] ); } // Normalization (division by norm) inline Point & Normalize() { S n = Norm(); if(n>0.0) (*this)/=n; return *this; } /// Homogeneous normalization (division by W) inline Point & HomoNormalize(){ if (_v[3]!=0.0) { _v[0] /= _v[3]; _v[1] /= _v[3]; _v[2] /= _v[3]; _v[3]=1.0; } return *this; }; //@} // Per component scaling inline Point & Scale( const Point & p ) { _v[0] *= p._v[0]; _v[1] *= p._v[1]; if (N>2) _v[2] *= p._v[2]; if (N>3) _v[3] *= p._v[3]; return *this; } // Convert to polar coordinates void ToPolar( S & ro, S & tetha, S & fi ) const { ro = Norm(); tetha = (S)atan2( _v[1], _v[0] ); fi = (S)acos( _v[2]/ro ); } //@{ /** @name Comparison Operators. Lexicographical order. **/ inline bool operator == ( Point const & p ) const { if (N==2) return _v[0]==p._v[0] && _v[1]==p._v[1]; if (N==3) return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2]; if (N==4) return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2] && _v[3]==p._v[3]; } inline bool operator != ( Point const & p ) const { if (N==2) return _v[0]!=p._v[0] || _v[1]!=p._v[1] ; if (N==3) return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2]; if (N==4) return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2] || _v[3]!=p._v[3]; } inline bool operator < ( Point const & p ) const { return (_v[2]!=p._v[2])?(_v[2] ( Point const & p ) const { return (_v[2]!=p._v[2])?(_v[2]>p._v[2]): (_v[1]!=p._v[1])?(_v[1]>p._v[1]): (_v[0]>p._v[0]); } inline bool operator <= ( Point const & p ) const { return (_v[2]!=p._v[2])?(_v[2]< p._v[2]): (_v[1]!=p._v[1])?(_v[1]< p._v[1]): (_v[0]<=p._v[0]); } inline bool operator >= ( Point const & p ) const { return (_v[2]!=p._v[2])?(_v[2]> p._v[2]): (_v[1]!=p._v[1])?(_v[1]> p._v[1]): (_v[0]>=p._v[0]); } inline PointType LocalToGlobal(ParamType p) const{ return *this; }; //@} }; // end class definition template inline S Angle( Point<3,S> const & p1, Point<3,S> const & p2 ) { S w = p1.Norm()*p2.Norm(); if(w==0) return -1; S t = (p1*p2)/w; if(t>1) t = 1; else if(t<-1) t = -1; return (S) acos(t); } // versione uguale alla precedente ma che assume che i due vettori sono unitari template inline S AngleN( Point<3,S> const & p1, Point<3,S> const & p2 ) { S w = p1*p2; if(w>1) w = 1; else if(w<-1) w=-1; return (S) acos(w); } template inline S Norm( Point const & p ) { return p.Norm(); } template inline S SquaredNorm( Point const & p ) { return p.SquaredNorm(); } template inline Point & Normalize( Point & p ) { p.Normalize(); return p; } template inline S Distance( Point const & p1,Point const & p2 ) { return (p1-p2).Norm(); } template inline S SquaredDistance( Point const & p1,Point const & p2 ) { return (p1-p2).SquaredNorm(); } // Dot product preciso numericamente (solo double!!) // Implementazione: si sommano i prodotti per ordine di esponente // (prima le piu' grandi) template double StableDot ( Point<3,S> const & p0, Point<3,S> const & p1 ) { } /// Computes a shape quality measure of the triangle composed by points p0,p1,p2 /// It Returns 2*AreaTri/(MaxEdge^2), /// the range is range [0.0, 0.866] /// e.g. Equilateral triangle sqrt(3)/2, halfsquare: 1/2, ... up to a line that has zero quality. template S Quality( Point<3,S> const &p0, Point<3,S> const & p1, Point<3,S> const & p2) { PointType d10=p1-p0; PointType d20=p2-p0; PointType d12=p1-p2; PointType x = d10^d20; S a = Norm( x ); if(a==0) return 0; // Area zero triangles have surely quality==0; S b = SquaredNorm( d10 ); S t = b; t = SquaredNorm( d20 ); if ( b Point<3,S> Normal(const Point<3,S> & p0, const Point<3,S> & p1, const Point<3,S> & p2) { return ((p1 - p0) ^ (p2 - p0)); } /// Like the above, it returns the normal to the plane passing through p0,p1,p2, but normalized. template Point<3,S> NormalizedNormal(const Point<3,S> & p0, const Point<3,S> & p1, const Point<3,S> & p2) { return ((p1 - p0) ^ (p2 - p0)).Normalize(); } /// Point(p) Edge(v1-v2) dist, q is the point in v1-v2 with min dist template S PSDist( const Point<3,S> & p, const Point<3,S> & v1, const Point<3,S> & v2, Point<3,S> & q ) { Point<3,S> e = v2-v1; S t = ((p-v1)*e)/e.SquaredNorm(); if(t<0) t = 0; else if(t>1) t = 1; q = v1+e*t; return Distance(p,q); } /*template inline Point<2,S>::Point ( const S nx, const S ny ) {_v[0]=nx;_v[1]=ny;};*/ /*template inline Point<4,S>::Point ( const S nx, const S ny , const S nz , const S nw ) {_v[0]=nx;_v[1]=ny;_v[2]=nz;_v[3]=nw;};*/ /*template < class S> Point<3,S> Point<3,S>::operator * ( const S s ) const { return Point<3,S>( _v[0]*s, _v[1]*s , _v[2]*s ); }*/ //template < class S> /*Point<3,double> Point<2,double>::operator * ( const double s ) const { return Point<2,double>( _v[0]*s, _v[1]*s ); }*/ typedef Point<3,short> Point3s; typedef Point<3,int> Point3i; typedef Point<3,float> Point3f; typedef Point<3,double> Point3d; /*@}*/ } // end namespace #endif