/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.26 2006/11/13 13:03:45 ponchio Added GetBBox in Point3 (declaration) the body of the function is in box3.h Revision 1.25 2006/10/13 12:59:24 cignoni Added **explicit** constructor from three coords of a different scalartype Revision 1.24 2006/09/28 13:37:35 m_di_benedetto added non const * V() Revision 1.23 2005/11/09 16:11:55 cignoni Added Abs and LowClampToZero Revision 1.22 2005/09/14 14:09:21 m_di_benedetto Added specialized Convert() for the same scalar type. Revision 1.21 2005/05/06 14:45:33 spinelli cambiato parentesi nel costruttore di GetUV per rendere compatibile tale costruttore con MVC e borland Revision 1.20 2005/04/27 16:05:19 callieri line 466, added parentesis on default value creator getUV [borland] Revision 1.19 2004/11/09 15:49:07 ganovelli added GetUV Revision 1.18 2004/10/13 12:45:51 cignoni Better Doxygen documentation Revision 1.17 2004/09/10 14:01:40 cignoni Added polar to cartesian Revision 1.16 2004/03/21 17:14:56 ponchio Added a math:: Revision 1.15 2004/03/07 22:45:32 cignoni Moved quality and normal functions to the triangle class. Revision 1.14 2004/03/05 17:55:01 tarini errorino: upper case in Zero() Revision 1.13 2004/03/03 14:22:48 cignoni Yet against cr lf mismatch Revision 1.12 2004/02/23 23:42:26 cignoni Translated comments, removed unusued stuff. corrected linefeed/cr Revision 1.11 2004/02/19 16:12:28 cignoni cr lf mismatch 2 Revision 1.10 2004/02/19 16:06:24 cignoni cr lf mismatch Revision 1.8 2004/02/19 15:13:40 cignoni corrected sqrt and added doxygen groups Revision 1.7 2004/02/17 02:08:47 cignoni Di prova... Revision 1.6 2004/02/15 23:35:47 cignoni Cambiato nome type template in accordo alla styleguide Revision 1.5 2004/02/10 01:07:15 cignoni Edited Comments and GPL license Revision 1.4 2004/02/09 13:48:02 cignoni Edited doxygen comments ****************************************************************************/ #ifndef __VCGLIB_POINT3 #define __VCGLIB_POINT3 #include #include #include namespace vcg { /** \addtogroup space */ /*@{*/ /** The templated class for representing a point in 3D space. The class is templated over the ScalarType class that is used to represent coordinates. All the usual operator overloading (* + - ...) is present. */ template class Box3; template class Point3 { protected: /// The only data member. Hidden to user. P3ScalarType _v[3]; public: typedef P3ScalarType ScalarType; enum {Dimension = 3}; //@{ /** @name Standard Constructors and Initializers No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types **/ inline Point3 () { } inline Point3 ( const P3ScalarType nx, const P3ScalarType ny, const P3ScalarType nz ) { _v[0] = nx; _v[1] = ny; _v[2] = nz; } inline Point3 ( Point3 const & p ) { _v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2]; } inline Point3 ( const P3ScalarType nv[3] ) { _v[0] = nv[0]; _v[1] = nv[1]; _v[2] = nv[2]; } inline Point3 & operator =( Point3 const & p ) { _v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2]; return *this; } inline void SetZero() { _v[0] = 0; _v[1] = 0; _v[2] = 0; } /// Padding function: give a default 0 value to all the elements that are not in the [0..2] range. /// Useful for managing in a consistent way object that could have point2 / point3 / point4 inline P3ScalarType Ext( const int i ) const { if(i>=0 && i<=2) return _v[i]; else return 0; } template inline void Import( const Point3 & b ) { _v[0] = P3ScalarType(b[0]); _v[1] = P3ScalarType(b[1]); _v[2] = P3ScalarType(b[2]); } template inline void FromEigenVector( const EigenVector & b ) { _v[0] = P3ScalarType(b[0]); _v[1] = P3ScalarType(b[1]); _v[2] = P3ScalarType(b[2]); } template static inline Point3 Construct( const Point3 & b ) { return Point3(P3ScalarType(b[0]),P3ScalarType(b[1]),P3ScalarType(b[2])); } template static inline Point3 Construct( const Q & P0, const Q & P1, const Q & P2) { return Point3(P3ScalarType(P0),P3ScalarType(P1),P3ScalarType(P2)); } static inline Point3 Construct( const Point3 & b ) { return b; } //@} //@{ /** @name Data Access. access to data is done by overloading of [] or explicit naming of coords (x,y,z)**/ inline P3ScalarType & operator [] ( const int i ) { assert(i>=0 && i<3); return _v[i]; } inline const P3ScalarType & operator [] ( const int i ) const { assert(i>=0 && i<3); return _v[i]; } inline const P3ScalarType &X() const { return _v[0]; } inline const P3ScalarType &Y() const { return _v[1]; } inline const P3ScalarType &Z() const { return _v[2]; } inline P3ScalarType &X() { return _v[0]; } inline P3ScalarType &Y() { return _v[1]; } inline P3ScalarType &Z() { return _v[2]; } inline const P3ScalarType * V() const { return _v; } inline P3ScalarType * V() { return _v; } inline P3ScalarType & V( const int i ) { assert(i>=0 && i<3); return _v[i]; } inline const P3ScalarType & V( const int i ) const { assert(i>=0 && i<3); return _v[i]; } //@} //@{ /** @name Classical overloading of operators Note **/ inline Point3 operator + ( Point3 const & p) const { return Point3( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2] ); } inline Point3 operator - ( Point3 const & p) const { return Point3( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2] ); } inline Point3 operator * ( const P3ScalarType s ) const { return Point3( _v[0]*s, _v[1]*s, _v[2]*s ); } inline Point3 operator / ( const P3ScalarType s ) const { return Point3( _v[0]/s, _v[1]/s, _v[2]/s ); } /// Dot product inline P3ScalarType operator * ( Point3 const & p ) const { return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] ); } inline P3ScalarType dot( const Point3 & p ) const { return (*this) * p; } /// Cross product inline Point3 operator ^ ( Point3 const & p ) const { return Point3 ( _v[1]*p._v[2] - _v[2]*p._v[1], _v[2]*p._v[0] - _v[0]*p._v[2], _v[0]*p._v[1] - _v[1]*p._v[0] ); } inline Point3 & operator += ( Point3 const & p) { _v[0] += p._v[0]; _v[1] += p._v[1]; _v[2] += p._v[2]; return *this; } inline Point3 & operator -= ( Point3 const & p) { _v[0] -= p._v[0]; _v[1] -= p._v[1]; _v[2] -= p._v[2]; return *this; } inline Point3 & operator *= ( const P3ScalarType s ) { _v[0] *= s; _v[1] *= s; _v[2] *= s; return *this; } inline Point3 & operator /= ( const P3ScalarType s ) { _v[0] /= s; _v[1] /= s; _v[2] /= s; return *this; } // Norme inline P3ScalarType Norm() const { return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] ); } inline P3ScalarType SquaredNorm() const { return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] ); } // Scalatura differenziata inline Point3 & Scale( const P3ScalarType sx, const P3ScalarType sy, const P3ScalarType sz ) { _v[0] *= sx; _v[1] *= sy; _v[2] *= sz; return *this; } inline Point3 & Scale( const Point3 & p ) { _v[0] *= p._v[0]; _v[1] *= p._v[1]; _v[2] *= p._v[2]; return *this; } // Normalizzazione inline Point3 & Normalize() { P3ScalarType n = P3ScalarType(math::Sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2])); if (n > P3ScalarType(0)) { _v[0] /= n; _v[1] /= n; _v[2] /= n; } return *this; } // for compatibility with eigen port inline Point3 & normalized() { return Normalize(); } /** * Convert to polar coordinates from cartesian coordinates. * * Theta is the azimuth angle and ranges between [0, 2PI) degrees. * Phi is the elevation angle (not the polar angle) and ranges between [-PI/2, PI/2] degrees. * * /note Note that instead of the classical polar angle, which ranges between * 0 and PI degrees we opt for the elevation angle to obtain a more * intuitive spherical coordinate system. */ void ToPolarRad(P3ScalarType &ro, P3ScalarType &theta, P3ScalarType &phi) const { ro = Norm(); theta = (P3ScalarType)atan2(_v[2], _v[0]); phi = (P3ScalarType)asin(_v[1]/ro); } /** * Convert from polar coordinates to cartesian coordinates. * * Theta is the azimuth angle and ranges between [0, 2PI) radians. * Phi is the elevation angle (not the polar angle) and ranges between [-PI/2, PI/2] radians. * * \note Note that instead of the classical polar angle, which ranges between * 0 and PI degrees, we opt for the elevation angle to obtain a more * intuitive spherical coordinate system. */ void FromPolarRad(const P3ScalarType &ro, const P3ScalarType &theta, const P3ScalarType &phi) { _v[0]= ro*cos(theta)*cos(phi); _v[1]= ro*sin(phi); _v[2]= ro*sin(theta)*cos(phi); } Box3 GetBBox(Box3 &bb) const; //@} //@{ /** @name Comparison Operators. Note that the reverse z prioritized ordering, useful in many situations. **/ inline bool operator == ( Point3 const & p ) const { return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2]; } inline bool operator != ( Point3 const & p ) const { return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2]; } inline bool operator < ( Point3 const & p ) const { return (_v[2]!=p._v[2])?(_v[2] ( Point3 const & p ) const { return (_v[2]!=p._v[2])?(_v[2]>p._v[2]): (_v[1]!=p._v[1])?(_v[1]>p._v[1]): (_v[0]>p._v[0]); } inline bool operator <= ( Point3 const & p ) const { return (_v[2]!=p._v[2])?(_v[2]< p._v[2]): (_v[1]!=p._v[1])?(_v[1]< p._v[1]): (_v[0]<=p._v[0]); } inline bool operator >= ( Point3 const & p ) const { return (_v[2]!=p._v[2])?(_v[2]> p._v[2]): (_v[1]!=p._v[1])?(_v[1]> p._v[1]): (_v[0]>=p._v[0]); } inline Point3 operator - () const { return Point3 ( -_v[0], -_v[1], -_v[2] ); } //@} }; // end class definition template inline P3ScalarType Angle( Point3 const & p1, Point3 const & p2 ) { P3ScalarType w = p1.Norm()*p2.Norm(); if(w==0) return -1; P3ScalarType t = (p1*p2)/w; if(t>1) t = 1; else if(t<-1) t = -1; return (P3ScalarType) acos(t); } // versione uguale alla precedente ma che assume che i due vettori sono unitari template inline P3ScalarType AngleN( Point3 const & p1, Point3 const & p2 ) { P3ScalarType w = p1*p2; if(w>1) w = 1; else if(w<-1) w=-1; return (P3ScalarType) acos(w); } template inline P3ScalarType Norm( Point3 const & p ) { return p.Norm(); } template inline P3ScalarType SquaredNorm( Point3 const & p ) { return p.SquaredNorm(); } template inline Point3 & Normalize( Point3 & p ) { p.Normalize(); return p; } template inline P3ScalarType Distance( Point3 const & p1,Point3 const & p2 ) { return (p1-p2).Norm(); } template inline P3ScalarType SquaredDistance( Point3 const & p1,Point3 const & p2 ) { return (p1-p2).SquaredNorm(); } template P3ScalarType ApproximateGeodesicDistance(const Point3& p0, const Point3& n0, const Point3& p1, const Point3& n1) { Point3 V(p0-p1); V.Normalize(); const P3ScalarType C0 = V*n0; const P3ScalarType C1 = V*n1; const P3ScalarType De = Distance(p0,p1); if(fabs(C0-C1)<0.0001) return De/sqrt(1-C0*C1); const P3ScalarType Dg = ((asin(C0) - asin(C1))/(C0-C1)); return Dg*De; } // Dot product preciso numericamente (solo double!!) // Implementazione: si sommano i prodotti per ordine di esponente // (prima le piu' grandi) template double stable_dot ( Point3 const & p0, Point3 const & p1 ) { P3ScalarType k0 = p0._v[0]*p1._v[0]; P3ScalarType k1 = p0._v[1]*p1._v[1]; P3ScalarType k2 = p0._v[2]*p1._v[2]; int exp0,exp1,exp2; frexp( double(k0), &exp0 ); frexp( double(k1), &exp1 ); frexp( double(k2), &exp2 ); if( exp0 P3ScalarType PSDist( const Point3 & p, const Point3 & v1, const Point3 & v2, Point3 & q ) { Point3 e = v2-v1; P3ScalarType t = ((p-v1)*e)/e.SquaredNorm(); if(t<0) t = 0; else if(t>1) t = 1; q = v1+e*t; return Distance(p,q); } template void GetUV( Point3 &n,Point3 &u, Point3 &v, Point3 up=(Point3(0,1,0)) ) { n.Normalize(); const double LocEps=double(1e-7); u=n^up; double len = u.Norm(); if(len < LocEps) { if(fabs(n[0])(1,0,0); // x is the min else up=Point3(0,0,1); // z is the min }else { if(fabs(n[1])(0,1,0); // y is the min else up=Point3(0,0,1); // z is the min } u=n^up; } u.Normalize(); v=n^u; v.Normalize(); Point3 uv=u^v; } template inline Point3 Abs(const Point3 & p) { return (Point3(math::Abs(p[0]), math::Abs(p[1]), math::Abs(p[2]))); } // probably a more uniform naming should be defined... template inline Point3 LowClampToZero(const Point3 & p) { return (Point3(std::max(p[0], (SCALARTYPE)0), std::max(p[1], (SCALARTYPE)0), std::max(p[2], (SCALARTYPE)0))); } typedef Point3 Point3s; typedef Point3 Point3i; typedef Point3 Point3f; typedef Point3 Point3d; /*@}*/ } // end namespace #endif